SHORT REPORT

Open Access

Epidemiology of plasmid-mediated quinolone resistance in *salmonella enterica* serovar typhimurium isolates from food-producing animals in Japan

Tetsuo Asai^{1*}, Chizuru Sato², Kaori Masani², Masaru Usui¹, Manao Ozawa¹, Tomoe Ogino¹, Hiroshi Aoki², Takuo Sawada², Hidemasa Izumiya³, Haruo Watanabe³

Abstract

A total of 225 isolates of *Salmonella enterica* serovar Typhimurium from food-producing animals collected between 2003 and 2007 were examined for the prevalence of plasmid-mediated quinolone resistance (PMQR) determinants, namely *qnrA*, *qnrB*, *qnrC*, *qnrD*, *qnrS*, *qepA* and *aac(6')lb-cr*, in Japan. Two isolates (0.8%) of *S*. Typhimurium DT104 from different dairy cows on a single farm in 2006 and 2007 were found to have *qnrS1* on a plasmid of approximately 9.6-kbp. None of the *S*. Typhimurium isolates had *qnrA*, *qnrB*, *qnrC*, *qnrD*, *qepA* and *acc(6')-lb-cr*. Currently in Japan, the prevalence of the PMQR genes among *S*. Typhimurium isolates from food animals may remain low or restricted. The PFGE profile of two *S*. Typhimurium DT104 isolates without *qnrS1* on the farm in 2005 had an identical PFGE profile to those of two *S*. Typhimurium DT104 isolates with *qnrS1*. The PFGE analysis suggested that the already existing *S*. Typhimurium DT104 on the farm fortuitously acquired the *qnrS1* plasmid.

Findings

Salmonella enterica serovar Typhimurium is prevalent in many animal species [1-3] including food-producing animals that are considered to be reservoirs for human infection. S. Typhimurium was the top 5 serovar found most frequently in cases of Salmonella foodborne illness in Japan between 2006 and 2010 https://hasseidoko. mhlw.go.jp/Byogentai/Pdf/data48e.pdf. Multidrug-resistant S. Typhimurium definitive phage type 104 (DT104) causes human salmonellosis in Japan [3]. S. Typhimurium DT104 was first isolated in the late 1980 s, and has spread widely among food-producing animals across Japan [3-5]. Although a decreased proportion of DT104related isolates among the animals was found between 2002 and 2005, multidrug-resistant S. Typhimurium remains prevalent among food-producing animals in Japan [6].

* Correspondence: asai-t@nval.maff.go.jp

¹National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan Full list of author information is available at the end of the article

In Japan, fluoroquinolone drugs were approved in veterinary fields in 1991 and are commonly used for treatment of bacterial diseases such as enteritis and pneumonia in food-producing animals [7]. In 2001, fluoroquinolone resistance was found in S. Choleraesuis from pigs [8] and S. Typhimurium from cattle [9]. In addition, a fluoroquinolone-resistant S. Typhimurium was identified in bovine isolates in 2005 [6]. The mechanism of fluoroquinolone resistance in these isolates is the mutation of quinolone resistance-determining regions (QRDRs) in DNA gyrase and topoisomerase IV [8,9]. In 2006, gnrS1 was identified in two S. Typhimurium isolates (including one DT104 isolate) from dairy cows and beef cattle, and S. Thompson from poultry in Japan [10]. The report identified the potential risk of foodborne infections of Salmonella conferring the gene from food-producing animals to humans in Japan.

Quinolone resistance mechanisms mediated by plasmids are responsible for target protection such as the *qnr* genes, active efflux such as *qepA*, and enzymatic modifications such as *aac(6')Ib-cr* [11]. The plasmidmediated quinolone resistance (PMQR) genes contribute

© 2010 Asai et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. to a reduction of quinolone susceptibility. In Japan, *qnrS* was first identified in human isolates of *Shigella flexneri* in 2003 [12]. *qepA*-harboring clinical isolates of *Escherichia coli* were found in 2002 in Japan [13]. *qnrB* in *Klebsiella oxytoca, Pseudomonas mirabilis,* and *P. fluorescens,* and *qnrS* in *E. coli* and *Enterobacter cloacae* were found in zoo animal isolates in 2006 [14]. In addition, the presences of *qnrS1* and *qnrS2* in *Salmonella* isolated from fecal samples of overseas travelers were reported in Japan [15]. These reports provided an infectious source of *Enterobacteriaceae* conferring plasmid-mediated quinolone resistance in Japan. We examined the prevalence of plasmid-mediated quinolone resistance in *S.* Typhimurium isolated from food-producing animals.

A total of 225 isolates of S. Typhimurium from foodproducing animals collected between 2003 and 2007 were derived from 156 cattle, 62 pigs and 7 poultry: includes 42 isolates of DT104, 8 of DT104B, and 2 of U302 (Table 1). Bacteriophage typing was performed according to the methods of the Health Protection Agency, London, United Kingdom [16]. Of the isolates, 132 S. Typhimurium isolates collected between 2003 and 2005 [6] were subjected to detection of the PMQR genes. The remaining 93 isolates between 2006 and 2007 were investigated for the presence of the PMQR genes and antimicrobial susceptibility. The presence of qnrA, qnrB and qnrS genes was determined by PCR [17]. The *qnrC* and *qnrD* genes were detected using the primers as previously described [18,19], respectively. The *qepA* and *acc(6')-Ib-cr* genes were examined as previously described [20,21]. Nucleotide sequences of both strands were determined directly on PCR products. The DNA alignments and deduced amino acid sequences were examined using the BLAST program (National Center for Biotechnology Information, USA). Minimum inhibitory concentrations (MICs) of antimicrobial agents were determined using the agar dilution methods according to the Clinical and Laboratory Standards Institute (CLSI) guidelines [22]. The following 11 antimicrobials were tested: ampicillin (ABPC), cefazolin, colistin, chloramphenicol (CP), dihydrostreptomycin (DSM), gentamicin, kanamycin, oxytetracycline (OTC), nalidixic acid, enrofloxacin (ERFX), and trimethoprim. The MICs of each antimicrobial agent were interpreted using the recommendations of the CLSI [23]. The breakpoints not seen in the CLSI were defined in a previous study [1]. *Staphylococcus aureus* ATCC 29213, *Enterococcus faecalis* ATCC29212, *E. coli* ATCC 25922 and *P. aeruginosa* ATCC 27853 were used as quality control strains.

Of 225 *S*. Typhimurium isolates, two isolates of DT104, 18-PLS-16 and 19-PLS-45, from different dairy cows on a single farm in 2006 and 2007 showed *qnrS* positive results. The sequencing of amplicons showed complete identity to *qnrS1* previously identified on pAH0376 from a *S. flexneri* strain. None of the *S*. Typhimurium isolates had *qnrA*, *qnrB*, *qnrC*, *qnrD*, *qepA* and *acc(6')-Ib-cr*. The two isolates exhibited ERFX resistance (ERFX MIC, 2 mg/L) with resistances to ABPC, DSM, OTC and CP (Table 2).

The QRDR of gyrA, parC and parE was examined in ERFX-resistant isolates by PCR amplification and sequencing using primers as described elsewhere [24]. In addition, susceptibility of ERFX-resistant isolates to fluoroquinolones was examined using the micro broth dilution methods according to CLSI guidelines [22]. For evaluation of active efflux of the ERFX-resistant bacteria, the MIC of ERFX was determined by the agar dilution method in the presence of carbonyl cyanide *m*-chlorophenylhydrazone (CCCP) (100 μ M). They had no mutations in the QRDR of GyrA, ParC and ParE. The MIC of ERFX was not changed in the presence of CCCP (100 μ M). The two isolates with qnrS1 exhibited almost the same MIC observed for each fluoroquinolone, which is relative low compared with the MIC for isolate (17-PLS-75) with mutations in the QRDR of GyrA and ParC.

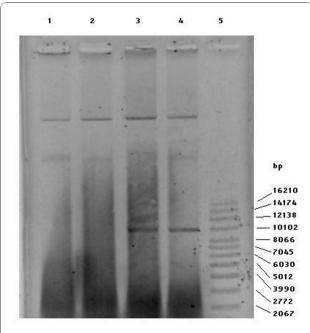
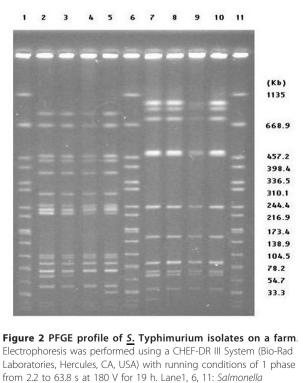

Plasmid DNA was isolated from the *qnrS1*-positive isolates by the alkaline lysis method [25]. Extracted plasmids were transferred to Hybond-N+ membrane (Amersham Biosciences, Buckinghamshire, UK) using capillary blotting apparatus. The *qnrS1* PCR product was labeled with DIG-11-dUTP by PCR using a DIG High Prime DNA Labeling Kit (Roche Diagnostics Ltd,

Table 1 Salmonella Typhimurium isolates used in this study

			•						
	Cattle				Pig			Poultry	
Isolation		Phagetype				Phagetype			Phagetype
year	Typhimurium	104	104B	U302	Typhimurium	104	104B	Typhimurium	104
2003	24	8	2	0	8	0	0	0	0
2004	25	3	0	2	8	1	0	0	0
2005	42	12	0	0	21	1	0	4	1
2006	23	4	0	0	11	2	0	2	1
2007	42	4	4	0	14	5	2	1	0
Total	156	31	6	2	62	9	2	7	2


Antimicrobials	18-PLS-16	19-PLS-45	17-PLS-75
Year isolated	2006	2007	2005
Sources	Cattle	Cattle	Cattle
qnr	qnrS1	qnrS1	-
mutation in gyrA	WT	WT	S83F&D87N
mutation in parC	WT	WT	S80R
phagetype	104	104	12
Naldixic acid	32	32	256
Oxolinic acid	4	4	>64
Flumequine	16	8	>64
Benofloxacin	4	4	16
Ciprofloxacin	1	1	8
Danofloxacin	2	2	16
Difloxacin	8	4	>32
Enrofloxacin	2	2	16
Levofloxacin	1	1	8
Norfloxacin	2	2	16

East Sussex, UK). After hybridization with the *qnrS1* probe, hybridized DNA was detected using a DIG Nucleic Acid Detection Kit (Roche Diagnostics Ltd). Using a plasmid profiling test, an approximately 93-kbp plasmid (virulence plasmid) was found in all four isolates, whereas there was also an approximately 9.6-kbp plasmid found in the *qnr*-conferring isolates. Hybridization tests revealed that *qnrS1* was located on the 9.6-Kbp plasmid (Figure 1).

Figure 1 Plasmid profile of <u>S.</u> Typhimurium isolates on a farm. Lane 1: 17-PLS-27, Lane 2: 17-PLS-28, Lane 3: 18-PLS-16, Lane 4: 19-PLS-45, Lane 5: Super coiled DNA ladder.

The appearance of S. Typhimurium DT104 conferring qnrS1 on the farm is caused either by the introduction of S. Typhimurium DT104 conferring qnrS1 or the transfer of the qnrS1 plasmid to S. Typhimurium DT104 already existing on the farm. According to the CDC PulseNet protocol [26], genetic relatedness of isolates were analyzed by PFGE with XbaI and BlnI restriction enzymes. The isolates tested included two qnrS1-negative isolates of S. Typhimurium DT104 isolated in 2005 on a farm in which *qnrS1*-conferring isolates were found. In the present study, it was difficult to precisely distinguish between the two S. Typhimurium DT104 isolates without *qnrS1* and the two S. Typhimurium DT104 isolates with *qnrS1* by PFGE analysis (Figure 2). Our previous study showed that there is a variation in the BlnI-digested PFGE profiles of S. Typhimurium DT104 isolated from food-producing animals in Japan [5]. These results suggested that the S. Typhimurium DT104 already present on the farm fortuitously acquired the qnrS1 plasmid. Previous studies showed that qnrS1 in Typhimurium isolated in the UK was present on plasmids of 10,066 bp, which were transferable by the conjugation test and carry an IncN replicon [27,28]. Further study need to clarify the source of plasmid bearing gnrS1.

from 2.2 to 63.8 s at 180 V for 19 h. Lane1, 6, 11: <u>Salmonella</u> Braenderup H9812 digested with Xbal. Lane 2 and 7: 17-PLS-27, Lane 3 and 8: 17-PLS-28, Lane 4 and 9: 18-PLS-16, Lane 5 and 10: 19-PLS-45. Lane 2 to 5: Xbal digestion, Lane 7 to 10: Blnl digestion.

This study demonstrated that the two isolates of S. Typhimurium collected from different cattle on a farm in 2006 and 2007 harbored qnrS1 on a 9.6-Kbp plasmid. At present in Japan, dissemination of qnrS1 among S. Typhimurium isolates from food animals may remain restricted. The spread of plasmids carrying anr among Salmonella isolates of animal origin could have serious consequences for fluoroquinolone treatment of non-typhoid Salmonella infection in humans and animals. Previously, *qnrS1* and *qnrS2* were found in serovars Typhimurium, Corvallis, Montevideo, Agona, Braenderup and Alacua of Salmonella isolates from fecal samples of overseas travelers who had visited Thailand, Malaysia, Vietnam, Indonesia and Singapore, between 2001 and 2007 [15]. PMQR is identified in human isolates of Enterobacteriaceae but is likely to be rare in isolates from food-producing animals [29]. However, in China, plasmid-mediated quinolone resistance is frequently found in the isolates from food-producing animals [20]. Thus it would be difficult to prevent the invasion of resistance genes from foreign countries to Japan. The monitoring of fluoroquinolone use and quinolone resistance in bacteria of food-producing animal origin is essential to assess the level of risk of resistance in food-borne bacteria in the animals.

Abbreviations

ABPC: ampicillin; CCCP: carbonyl cyanide *m*-chlorophenylhydrazone; CLSI: Clinical and Laboratory Standards Institute; CP: chloramphenicol; DSM: dihydrostreptomycin; DT104: definitive phage type 104; MICs: Minimum inhibitory concentrations OTC: oxytetracycline; PMQR: plasmid-mediated quinolone resistance; QRDRs: quinolone resistance-determining regions; ERFX: enrofloxacin.

Acknowledgements

We thank the staff of the Livestock Hygiene Service Centers across Japan for providing *S. enterica* serovar Typhimurium isolates. This work was supported in part by a grant-in aid from the Japanese Ministry of Health, Labour and Welfare (H21-Shokuhin-Ippan-013).

Author details

¹National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan. ²Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino, Tokyo 180-8602, Japan. ³National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.

Authors' contributions

TA conceived the study, the study design, participated in the determination of quinolone resistance and determinants, interpreted the data and drafted the manuscript. CS carried out large parts of the experimental work. KM helped to carried out prevalence of resistance genes. MU helped to carried out prevalence of resistance genes. MU helped to carried susceptibility testing. TO carried out the antimicrobial susceptibility testing. TO carried out the antimicrobial susceptibility testing. TA helped to carry out determination of quinolone resistance and draft the manuscript. TS helped to draft the manuscript. HI carried out phage typing and helped to draft the manuscript. WH helped to draft the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 17 November 2010 Accepted: 7 December 2010 Published: 7 December 2010

References

- Asai T, Esaki H, Kojima A, Ishihara K, Tamura Y, Takahashi T: Antimicrobial resistance in *Salmonella* isolates from apparently healthy foodproducing animal from 2000 to 2003: the first stage of Japanese veterinary antimicrobial resistance monitoring (JVARM). *J Vet Med Sci* 2006, 68:881-884.
- Asai T, Otagiri Y, Osumi T, Namimatsu T, Hirai H, Sato S: Isolation of Salmonella from diarrheic feces of pigs. J Vet Med Sci 2002, 64:159-160.
- Izumiya H, Tamura K, Terajima J, Watanabe H: Salmonella enterica serovar. Typhimurium phage type DT104 and other multi-drug resistant strains in Japan. Jpn J Infect Dis 1999, 52:133.
- Sameshima T, Akiba M, Izumiya H, Terajima J, Tamura K, Watanabe H, Nakazawa M: Salmonella typhimurium DT104 from livestock in Japan. Jpn J Infect Dis 2000, 53:15-16.
- Esaki H, Morioka A, Kojima A, Ishihara K, Asai T, Tamura Y, Izumiya H, Terajima J, Watanabe H, Takahashi T: Epidemiological characterization of *Salmonella* Typhimurium DT104 prevalent among food-producing animals in the Japanese veterinary antimicrobial resistance monitoring program (1999-2001). *Microbiol Immunol* 2004, 48:553-556.
- Kawagoe K, Mine H, Asai T, Kojima A, Ishihara K, Harada K, Ozawa M, Izumiya H, Terajima J, Watanabe H, *et al*: Changes of multi-drug resistance pattern in Salmonella enterica subspecies enterica serovar Typhimurium isolates from food-producing animals in Japan. J Vet Med Sci 2007, 69:1211-1213.
- Asai T, Harada K, Ishihara K, Kojima A, Sameshima T, Tamura Y, Takahashi T: Association of antimicrobial resistance in *Campylobacter* isolated from food-producing animals with antimicrobial use on farms. *Jpn J Infect Dis* 2007, 60:290-294.
- Esaki H, Chiu CH, Kojima A, Ishihara K, Asai T, Tamura Y, Takahashi T: Comparison of fluoroquinolone resistance genes of *Salmonella enterica* serovar Choleraesuis isolates in Japan and Taiwan. *Jpn J Infect Dis* 2004, 57:287-288.
- Izumiya H, Terajima J, Matsushita S, Tamura K, Watanabe H: Characterization of multidrug-resistant Salmonella enterica serovar Typhimurium isolated in Japan. J Clin Microbiol 2001, 39:2700-2703.
- Ahmed AM, Ishida Y, Shimamoto T: Molecular characterization of antimicrobial resistance in Salmonella isolated from animals in Japan. J Appl Microbiol 2009, 106:402-409.
- Jacoby GA: Mechanisms of resistance to quinolones. Clin Infect Dis 2005, 41(Suppl 2):S120-126.
- Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K: Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother 2005, 49:801-803.
- Yamane K, Wachino J, Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T, Arakawa Y: New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an *Escherichia coli* clinical isolate. *Antimicrob Agents Chemother* 2007, 51:3354-3360.
- Ahmed AM, Motoi Y, Sato M, Maruyama A, Watanabe H, Fukumoto Y, Shimamoto T: Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. *Appl Environ Microbiol* 2007, 73:6686-6690.
- Taguchi M, Kawahara R, Seto K, Inoue K, Hayashi A, Yamagata N, Kamakura K, Kashiwagi E: Plasmid-mediated quinolone resistance in Salmonella isolated from patients with overseas travelers' diarrhea in Japan. Jpn J Infect Dis 2009, 62:312-314.
- Anderson ES, Ward LR, Saxe MJ, de Sa JD: Bacteriophage-typing designations of Salmonella typhimurium. J Hyg (Lond) 1977, 78:297-300.
- Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P: Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBLproducing enterobacterial isolates. J Antimicrob Chemother 2007, 60:394-397.
- Wang M, Guo Q, Xu X, Wang X, Ye X, Wu S, Hooper DC, Wang M: New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Chemother 2009, 53:1892-1897.

- Cavaco LM, Hasman H, Xia S, Aarestrup FM: qnrD, a novel gene conferring transferable quinolone resistance in *Salmonella enterica* serovar Kentucky and Bovismorbificans strains of human origin. *Antimicrob Agents Chemother* 2009, **53**:603-608.
- Ma J, Zeng Z, Chen Z, Xu X, Wang X, Deng Y, Lu D, Huang L, Zhang Y, Liu J, et al: High prevalence of plasmid-mediated quinolone resistance determinants qnr, aac(6')-lb-cr, and qepA among ceftiofur-resistant Enterobacteriaceae isolates from companion and food-producing animals. Antimicrob Agents Chemother 2009, 53:519-524.
- Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC: Prevalence in the United States of aac(6')-lb-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 2006, 50:3953-3955.
- 22. CLSI: Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. *Approved standard M31-A3.* 3 edition. Wayne, PA: Clinical and Laboratory Standards Institute; 2008.
- CLSI: Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement. Wayne, PA.: Clinical and Laboratory Standards Institute; 2008.
- 24. Giraud E, Brisabois A, Martel JL, Chaslus-Dancla E: Comparative studies of mutations in animal isolates and experimental in vitro- and in vivoselected mutants of *Salmonella* spp. suggest a counterselection of highly fluoroquinolone-resistant strains in the field. *Antimicrob Agents Chemother* 1999, **43**:2131-2137.
- 25. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res* 1979, **7**:1513-1523.
- Hunter SB, Vauterin P, Lambert-Fair MA, Van Duyne MS, Kubota K, Graves L, Wrigley D, Barrett T, Ribot E: Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J Clin Microbiol 2005, 43:1045-1050.
- Kehrenberg C, Hopkins KL, Threlfall EJ, Schwarz S: Complete nucleotide sequence of a small qnrS1-carrying plasmid from *Salmonella enterica* subsp. *enterica* Typhimurium DT193. J Antimicrob Chemother 2007, 60:903-905.
- Hopkins KL, Wootton L, Day MR, Threlfall EJ: Plasmid-mediated quinolone resistance determinant qnrS1 found in *Salmonella enterica* strains isolated in the UK. J Antimicrob Chemother 2007, 59:1071-1075.
- Robicsek A, Jacoby GA, Hooper DC: The worldwide emergence of plasmid-mediated quinolone resistance. *Lancet Infect Dis* 2006, 6:629-640.

doi:10.1186/1757-4749-2-17

Cite this article as: Asai *et al.*: Epidemiology of plasmid-mediated quinolone resistance in *salmonella enterica* serovar typhimurium isolates from food-producing animals in Japan. *Gut Pathogens* 2010 2:17.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

BioMed Central