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Abstract 

Background: Paenibacillus sp. strain VT-400, a novel spore-forming bacterium, was isolated from patients with hema-
tological malignancies.

Methods: Paenibacillus sp. strain VT-400 was isolated from the saliva of four children with acute lymphoblastic leuke-
mia. The genome was annotated using RAST and the NCBI Prokaryotic Genome Annotation Pipeline to characterize 
features of antibiotic resistance and virulence factors. Susceptibility to antibiotics was determined by the Kirby–Bauer 
disc diffusion method. We used a mouse model of pneumonia to study virulence in vivo. Mice were challenged with 
7.5 log10–9.5 log10 CFU, and survival was monitored over 7 days. Bacterial load was measured in the lungs and spleen 
of surviving mice 48 h post-infection to reveal bacterial invasion and dissemination.

Results: Whole-genome sequencing revealed a large number of virulence factors such as hemolysin D and CD4+ 
T cell-stimulating antigen. Furthermore, the strain harbors numerous antibiotic resistance genes, including small 
multidrug resistance proteins, which have never been previously found in the Paenibacillus genus. We then compared 
the presence of antibiotic resistance genes against results from antibiotic susceptibility testing. Paenibacillus sp. strain 
VT-400 was found to be resistant to macrolides such as erythromycin and azithromycin, as well as to chloramphenicol 
and trimethoprim–sulphamethoxazole. Finally, the isolate caused mortality in mice infected with ≥8.5 log10 CFU.

Conclusions: Based on our results and on the available literature, there is yet no strong evidence that shows Pae-
nibacillus species as an opportunistic pathogen in immunocompromised patients. However, the presence of spore-
forming bacteria with virulence and antibiotic resistance genes in such patients warrants special attention because 
infections caused by spore-forming bacteria are poorly treatable.
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Background
Acute leukemia accounts for more than 10,000 deaths 
annually despite improved treatment regimens and novel 
cytostatic agents [1]. Pneumonia due to opportunistic 
Gram-positive Staphylococcus spp., Bacillus spp., and 
Enterococcus spp. is one of the leading causes of mor-
bidity in these patients, as well as in patients with other 
forms of hematological malignancies, because of treat-
ment-induced immunosuppression [2, 3].

The oral cavity, which hosts more than 700 commensal 
bacterial species, is the main reservoir of microorganisms 
that cause aspiration pneumonia [4, 5]. Thus, investigat-
ing the oral microbiome is essential to improve therapeu-
tic strategies, especially for patients with hematological 
malignancies [6]. However, most commensal bacteria are 
not yet culturable, and molecular techniques based on 
cloning and sequencing the ribosomal 16S RNA have 
been used instead to identify species in the human micro-
biome [7]. Nevertheless, these techniques are prone to 
false negatives, such as when one bacterial species masks 
another, and thus underestimate bacterial diversity [8, 9]. 
In a previous study, we described Paenibacillus sp. strain 
VT-400, a novel spore-forming bacterium isolated from 
the saliva of patients with acute lymphoblastic leukemia 
[10]. The strain has never been previously detected in 
humans.

Notably, spore-forming bacteria are poorly stud-
ied, and only a few such bacteria have been described 
and are associated with the human microbiota [11, 12]. 
Spores tolerate high temperature, radiation, and noxious 
chemicals, harbor genes that confer antibiotic resist-
ance, and allow bacteria to survive in unfavorable con-
ditions [13, 14]. Thus, spores contribute significantly to 
the persistence of infection and the spread of antimi-
crobial resistance [15]. Indeed, prophylactic treatments 
like oral rinses are poorly effective against spores, and 
are thus not sufficiently reduce the bacterial load in the 
oropharynx, or prevent aspiration pneumonia in at-risk 
patients, especially those with underlying pathologies 
such as hematological malignancies [16, 17]. Therefore, 
identification and characterization of potentially infec-
tious spore-forming microbial species are critical to 
improve the management or treatment of patients with 
acute leukemia.

Paenibacillus spp. was not known to cause human 
disease until recent reports implicated P. alvei, P. thia-
minolyticus, and P. sputi in respiratory and urinary tract 
infection, as well as bacteremia in a patient on hemodi-
alysis [18–20]. In this study, we describe Paenibacillus sp. 
strain VT-400, a novel bacterium isolated from the saliva 
of four children with hematological malignancies, and 
investigate its potential to cause pneumonia.

Methods
Bacterial strain
Paenibacillus sp. strain VT-400 was isolated from the 
saliva of four children with acute lymphoblastic leuke-
mia who were hospitalized at First Pavlov State Medical 
University, St. Petersburg, Russia. Unless stated other-
wise, the isolate was grown on Columbia agar with 5 % 
sheep blood (BioMerieux, France) and were stored at 
−80  °C in Columbia broth (BioMerieux) supplemented 
with 50 % glycerol. The strain was screened for hemolytic 
activity by cultivation at 37 °C for 48 h on agar plates sup-
plemented with 5 % sheep blood. Clearing and greenish 
zones around colonies were considered to indicate β- and 
α-hemolytic activity, respectively. Primary morphologi-
cal characterization was performed by light microscopy 
(Axiostar, Zeiss, Germany), and Gram staining was per-
formed using a kit (Merck, Darmstadt, Germany).

To generate inoculum for infecting mice, the strain was 
grown at 37 °C for 48 h on Columbia agar with 5 % sheep 
blood. Colonies picked from the plate were then grown 
for 18 h at 37 °C in 5 mL Columbia broth. Cells were har-
vested by centrifugation at 3000×g for 15  min (Eppen-
dorf 5415 C centrifuge; Eppendorf Geratgebau GmbH, 
Hamburg, Germany), and suspended in an isotonic phos-
phate buffer (0.15 mM, pH 7.2). The turbidity of the sus-
pension was adjusted using a McFarland standard.

Genome annotation and phylogenetic analysis
Whole-genome sequences from isolates of Paenibacillus 
sp. strain VT-400 were aligned using MUSCLE, and phy-
logenetic trees were constructed based on the Tamura-
Nei distance model in PHYML version 3.0, with 1000 
bootstrap replicates [21–23]. The most closely related 
Paenibacillus genomes were included in the analysis. 
The genome was annotated and mined for virulence fac-
tors and antibiotic resistance genes using Rapid Annota-
tion using Subsystems Technology (RAST) and the NCBI 
Prokaryotic Genome Annotation Pipeline [24, 25].

Antimicrobial susceptibility testing
Susceptibility to antibiotics was determined by the 
Kirby–Bauer disc diffusion method according to criteria 
defined by the Clinical and Laboratory Standards Insti-
tute [26]. The strain was tested for susceptibility to 30 µg 
amoxiclav, 10  μg ampicillin, 10  U penicillin, 30  µg van-
comycin, 30  μg cefotaxime, 10  μg erythromycin, 15  μg 
azithromycin, 10  µg gentamicin, 30  µg amikacin, 30  μg 
kanamycin, 2  μg clindamycin, 30  μg doxycycline, 5  µg 
ciprofloxacin, 30  μg neomycin, 30  μg chlorampheni-
col, 30  μg tetracycline (Becton–Dickinson, USA) and 
1.25 μg/23.75 μg trimethoprim-sulfamethoxazole (Oxoid, 
UK).
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Pathogenicity in a mouse infection model
Adult C57BL/6 mice weighing approximately 20 g (Rap-
polovo, North-West region, Russia) were housed in indi-
vidual cages in a facility free of known murine pathogens, 
and were provided feeding ad  libitum. Animals were 
cared for in accordance with National Research Council 
recommendations, and experiments were executed in 
accordance with the Guide for the Care and Use of Labo-
ratory Animals [27].

Animals were randomly designated into two groups 
of eight, which were used to measure overall survival 
and bacterial load. Mice were then anesthetized with 
2  % isoflurane, and orally instilled with bacterial sus-
pension as previously described [28]. Briefly, nares were 
blocked, and mice aspirated 50 µL Paenibacillus sp. strain 
VT400 into the lungs while being held vertically for 60 s. 
Mice received a total dose of 7.5 log10, 8.5 log10, or 9.5 
log10  CFU/mouse. Control mice were treated with ster-
ile 50 µL phosphate-buffered saline. Overall survival was 
assessed over 7 days, while bacterial load was measured in 
the lungs and spleen of surviving mice 48 h post infection.

Microbiological assessment of infected lung and spleen
Bacterial load in the spleen and lungs was measured 
48  h post infection. Briefly, surviving animals in groups 
designated for this assessment were euthanized by CO2 
and cervical dislocation. Lungs and spleen were collected 
and homogenized in 1 mL phosphate-buffered saline. As 
Paenibacillus sp. strain VT-400 was found to be resist-
ant to chloramphenicol and trimethoprim, serial tenfold 
dilutions of tissue homogenates were plated on Colum-
bia agar with 5  % sheep blood, 5  μg/mL chlorampheni-
col, and 10  μg/mL trimethoprim (Sigma Chemical Co., 
St Louis, MO, USA), and cultured at 37  °C. Colonies of 
spore-forming bacteria were counted after 48  h, and 
bacterial loads are reported as mean log10  CFU/g tis-
sue ± SD. Morphology was characterized by light micros-
copy (Axiostar, Zeiss), and cells were Gram stained using 
a kit (Merck).

Ethical approval and consent
Ethical approval was granted by the First State I. P. Pavlov 
Medical University Ethics Committee (501/M2013). In 
accordance with ethical approval, consent to use human 
biological material was assumed following completion of 
consent forms.

Statistics
Survival was compared by Kaplan–Meier analysis log-
rank test. Differences in bacterial load were evaluated by 
one-way analysis of variance in SigmaStat version 2.03 
(SPSS, Inc., San Rafael, CA). A P value <0.05 was consid-
ered significant.

Results
Phylogenetic analysis
Paenibacillus sp. strain VT 400, which has never been 
detected in humans before, was isolated for the first time 
from the saliva of pediatric patients with acute lympho-
blastic leukemia. In a previous study, whole-genome 
sequencing was performed on Illumina HiSeq 2500, with 
125-fold average coverage [10]. Assembly generated 116 
contigs spanning 6,986,122 bp, with G+C content 45.8 %.

On the basis of these analyses, the strain was identi-
fied as a novel species for which Paenibacillus sp. strain 
VT 400 was assigned, and its genome was deposited in 
GenBank under accession number LELF01000000. Phy-
logenetic analysis based on 16S rRNA demonstrated that 
Paenibacillus sp. strain VT 400 is clearly distinguished 
from other species, as well as from other strains of  
P. amylolyticus (Fig. 1).

Microbiological characteristics of Paenibacillus sp. strain 
VT 400
Paenibacillus sp. strain VT 400 is Gram-positive, aerobic, 
spore-forming, rod-shaped, and motile via peritrichous 
flagella [10]. Colonies growing on sheep blood agar are 
smooth, white pearl in color, and from 0.5 to 1  mm in 
diameter after 24  h at 37  °C in an aerobic atmosphere. 
β-hemolysis was observed around colonies growing on 
blood agar plates. The type strain is deposited in the 
Deutsche Sammlung fur Mikroorganismen und Zellkul-
turen (Braunschweig, Germany) under accession number 
DSM 100755.

Genes encoding virulence factors and in vivo 
pathogenicity
Analysis of the genome revealed a large number of genes 
encoding virulence factors that may contribute to patho-
genicity (Table  1) [29]. Most are degradative enzymes 
and adhesins that may facilitate infection, including pro-
teases, phospholipases, ureases, chitinases, and endo-
peptidases [30]. Significantly, we found chemotaxis 
proteins that were previously shown to contribute to bac-
terial virulence [31]. A couple of toxins or putative toxins 
were also detected, as well as superantigen CD4+ T-cell-
stimulating antigen, which causes severe symptoms and 
septic shock [32].

We used a mouse model of pneumonia to study viru-
lence in  vivo. Mice were challenged with 7.5 log10–9.5 
log10  CFU, and survival was monitored over 7  days 
(Fig. 2). All animals exhibited typical signs of acute infec-
tion within 24  h, including hypothermia, piloerection, 
breathing difficulty, narrowed palpebral fissures, trem-
bling, and reduced locomotor activity. There was a direct 
correlation between severity of symptoms and dose. 
Accordingly, mortality depended on dose as well, with 
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mortality observed within 48  h in mice exposed to 8.5 
log10 and 9.5 log10 CFU Paenibacillus sp. strain VT 400.

Bacterial load was also measured in the lungs and 
spleen of surviving mice 48  h post infection (Table  2). 
To confirm the presence of Paenibacillus sp. strain VT 
400, tissues were homogenized and plated on selective 
media. Spore-forming bacteria were identified by micros-
copy. There was approximately 2.47 log10 more CFU/g 
of infected lung tissue in the high-dose group than in 
the low-dose group (P < 0.05). In addition, the data indi-
cated that Paenibacillus sp. strain VT 400 spread from 
the lungs to the spleen, in which bacterial load was also 
dose-dependent. Taken together, the data suggest that 
mortality is due to, at least in part, progressive bacterial 
invasion and dissemination.

Moreover, analysis of the Paenibacillus sp. strain VT 
400 genome revealed an array of proteins involved in or 
essential for sporulation (Table 3). Phylogenetic analysis 
indicated that these genes are conserved and are closely 
related to other members of the Bacillaceae family [33].

Analysis of drug resistance genes and antimicrobial 
susceptibility testing
Genome analysis also revealed that Paenibacillus sp. 
strain VT 400 harbors different antibiotic resistance 
genes (Table 4). A total of 96 genes were major facilita-
tor superfamily (MFS) plasma membrane transporters, 
18 were multidrug ATP-binding cassette (ABC) trans-
porters [34, 35]. Four genes were identified as multid-
rug ABC transporter permeases, eight as multidrug and 
toxic compound extrusion (MatE) transporters, and two 

as small multidrug resistance (SMR) proteins [36, 37]. A 
multidrug drug metabolite transporter (DMT) was also 
detected [38]. Moreover, the Paenibacillus sp. strain VT 
400 genome also contains genes that confer resistance to 
specific antibiotics. Finally, genes encoding resistance to 
tellurium, tunicamycin, and bleomycin were also present. 
These compounds are used to treat hematological malig-
nancies [39, 40].

The antibiotic susceptibility of Paenibacillus sp. strain 
VT 400 was then tested against an array of antimicrobials 
commonly used to treat nosocomial pneumonia [41]. As 
can be seen from Table 5, the strain was resistant to mac-
rolides such as erythromycin and azithromycin, as well 
as to chloramphenicol and trimethoprim-sulfamethox-
azole. However, it was sensitive to β-lactams, aminogly-
cosides, glycopeptides, tetracyclines, lincosamides, and 
fluoroquinolones.

Discussion
Bacteria that colonize the oral cavity are important path-
ogenic agents of pneumonia and other opportunistic 
infections, especially in immunocompromised hosts. We 
have now identified one such bacterium, Paenibacillus 
sp. strain VT 400, a novel species that was isolated from 
children with acute leukemia [28].

Whole-genome analysis indicated that this spore-form-
ing bacterium harbors known virulence factors such as 
hemolysin, degradative enzymes, adhesins, and flagella. 
Moreover, CD4+ T-cell-stimulating antigen, a superan-
tigen that causes toxic shock, is also present, along with 
other virulence determinants such as peptidases, ureases, 

Fig. 1 Dendrogram illustrating the relationship of Paenibacillus sp. strain VT 400 to the most closely related Paenibacillus sequences deposited in 
GenBank. The tree is based on partial 16S rRNA sequences >1400 bp. Bootstrap proportions in 1000 replicates are shown at branch points
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lipases, and chitinases. Chemotaxis proteins were also 
found, suggesting that the isolate, which is motile, is 
capable of chemotaxis [42].

The detection of a strain such as Paenibacillus sp. strain 
VT 400 in patients with hematological malignancies is 
a critical result, especially in light of in  vivo studies. In 
these experiments, mice intranasally challenged with at 
least 8.5 log10 CFU of the isolate died from pneumonia, 
and were found to have infected lungs as well as spleen, 
indicating dissemination of the infection. Taken together, 

the data suggest that the strain not only presents genetic 
features of pathogenic bacteria, but may indeed trigger a 
life-threatening infection.

In addition, the genome of Paenibacillus sp. strain 
VT 400 features numerous multidrug efflux transport-
ers known to confer intrinsic and acquired resistance to 
many antibiotics used in clinical practice [43]. These pro-
teins catalyze uptake, efflux, diffusion, solute exchange, 
and other mechanisms of bacterial defense against xeno-
biotics [44, 45]. In addition, these transporters are not 

Table 1 Genes encoding virulence factors in Paenibacillus sp. strain VT 400

CDS no. Functional annotation CDS no. Functional annotation

Toxins or putative toxins

WP_017689222.1 Hemolysin D WP_047842244.1 CD4+ T-cell-stimulating antigen

Degradative enzymes and adhesins

WP_047843127.1 Cell adhesion protein WP_047843815.1 Peptidase M28

WP_047841133.1 Clp protease ClpX WP_047844415.1 Peptidase M15

WP_047841161.1 CAAX protease WP_047840296.1 Peptidase S9

WP_047841788.1 Zn-dependent protease WP_047840642.1 Peptidase S41

WP_036605888.1 Lon protease WP_047840884.1 Peptidase T

WP_047841635.1 ATP-dependent protease WP_047841004.1 Peptidase C60

WP_047842474.1 Clp protease ATPase WP_047842822.1 Peptidase S8

WP_047842474.1 RIP metalloprotease RseP WP_047843693.1 Peptidase M20

WP_047843793.1 Zinc metalloprotease WP_047841259.1 Peptidase M4

WP_047843449.1 Alkaline serine protease WP_047841848.1 Peptidase C15

WP_036611272.1 O-sialoglycoprotein endopeptidase WP_047844159.1 Peptidase M22

WP_047842657.1 Oligoendopeptidase F WP_047842036.1 Peptidase A24

WP_047842959.1 Endoglucanase WP_047842221.1 Peptidase M56

WP_047841916.1 Chitinase WP_047842221.1 Oligopeptidase PepB

WP_047840281.1 Aminopeptidase WP_047842554.1 Peptidase E

WP_047840267.1 Methionine aminopeptidase WP_047843428.1 Peptidase M32

WP_047844227.1 Lysophospholipase WP_047843333.1 Peptidase M29

WP_047843070.1 Phospholipase D WP_047843711.1 Peptidase M1

WP_047843459.1 5′-Nucleotidase WP_047843711.1 Peptidase M16

WP_047841534.1 GDSL family lipase WP_036610857.1 Urease subunit alpha ureC

WP_047842732.1 d-alanyl-d-alanine carboxypeptidase WP_047842024.1 Urease subunit beta ureB

Flagella components

WP_036607291.1 Flagellar motor protein MotA WP_047842476.1 Flagellar motor switch protein FliG

WP_036607292.1 Flagellar motor protein MotB WP_047842475.1 Flagellar M-ring protein FliF

WP_047842487.1 Flagellar biosynthesis protein FlhA WP_047840678.1 Flagellar synthesis anti-sigma-D factor

WP_047842482.1 Flagellar basal body rod protein FlgG WP_047840677.1 Flagellar biosynthesis protein FlgN

WP_047843392.1 Flagellar basal body P-ring biosynthesis protein FlgA WP_047840676.1 Flagellar hook protein FlgK

WP_047842488.1 Flagellar GTP-binding protein WP_047840675.1 Flagellar hook protein FlgL

WP_047842486.1 Flagellar biosynthesis protein FlhB WP_047840661.1 Flagellar biosynthesis protein FliS

WP_047842485.1 Flagellar biosynthesis protein FliQ WP_036609359.1 Flagellar motor switch protein FliM

Chemotaxis

WP_047841047.1 Chemotaxis protein CheY WP_036605799.1 Chemotaxis protein CheC

WP_047842491.1 Chemotaxis protein CheA WP_036606984.1 Chemotaxis protein CheR

WP_025703561.1 Chemotaxis protein CheW WP_017689162.1 Chemotaxis protein CheD
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drug-specific and are associated with multidrug resist-
ance [46].

Moreover, the isolate contains two SMR efflux pumps, 
which are hallmarks of nosocomial infections and imply 
that Paenibacillus sp. strain VT 400 is most likely a cir-
culating hospital strain, or a strain circulating among 
hematology patients [47]. SMR efflux pumps confer 
nosocomial antibiotic resistance and poor sensitivity 
to biocidal quaternary ammonium compounds [48, 49]. 
Notably, SMR proteins have never been previously found 
in Paenibacillus.

We detected chloramphenicol acetyltransferase, mac-
rolide ABC transporter, vancomycin resistance protein, 
and FosB, which confer resistance to chloramphenicol, 
macrolide, vancomycin, and fosfomycin, respectively 
[50–52]. A bacteriocin resistance gene was also found, 
as were tetracycline resistance genes, including TetA 
[53, 54]. d-ala-d-ala ligase confers cycloserine resist-
ance, while dihydrofolate reductase A is associated with 
resistance to trimethoprim and trimethoprim-sulfameth-
oxazole [55, 56]. In addition, the genome contains resist-
ance genes to β-lactams, including metal-dependent 

hydrolases, as well as resistance genes to chemotherapeu-
tic drugs.

Nevertheless, many resistance genes of Paenibacillus 
sp. strain VT 400 are not expressed, in accordance with 
the idea that many mutations do not lead to resistant 
phenotype [57]. Sporulation, such as in Paenibacillus sp. 
strain VT 400, preserves and disperses genetic material 
such as antibiotic resistance genes to overcome harsh 
environmental conditions [58, 59]. These spores may be 
particularly hazardous to immunocompromised patients.

Conclusions
This study expands the number of poorly characterized 
Paenibacillus spp. that may cause pulmonary disease in 
humans [18]. We provide virulence and antibiotic resist-
ance data based on draft genomes and antimicrobial sus-
ceptibility testing. We also demonstrate the ability of the 
strain to trigger pneumonia in vivo, and to invade spleen 
tissue. Our data may have important implications in the 
clinic, as the oral microbial flora in patients with hemato-
logical malignancies could be a reservoir of pneumonia-
causing agents.
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Table 2 Paenibacillus sp. strain VT 400  CFU in  the lungs 
and spleen 48 h post infection

Dose (log10 CFU/mouse) Log10 CFU/g tissue, mean ± SD

Lung Spleen

Control 0 0

7.5 0.58 ± 0.28 0.14 ± 0.25

8.5 1.13 ± 0.55 0.25 ± 0.18

9.5 3.05 ± 0.74 1.20 ± 0.34

Table 3 Sporulation factors in  the Paenibacillus sp. strain 
VT 400 genome

CDS no. Functional annotation

Stage 0 (pre-septation)

WP_017691423.1 Sporulation protein J

WP_047842196.1 Sporulation protein M

Stage II (post-septation)

WP_047843799.1 Stage II sporulation protein P

WP_047840704.1 Stage II sporulation protein R

WP_017687629.1 Stage II sporulation protein M

Stage III (engulfment)

WP_024632710.1 Stage III sporulation protein D

WP_036674989.1 Stage III sporulation protein AA

WP_036614389.1 Stage III sporulation protein AB

WP_036614387.1 Stage III sporulation protein AE

WP_017687241.1 Sporulation protein YqfC

Stage IV (cortex)

WP_036607700.1 Stage IV sporulation protein A

Stage V (spore coat)

WP_047844446.1 Stage V sporulation protein AC

WP_047843814.1 Stage V sporulation protein AEB

WP_047843753.1 Stage V sporulation protein D

WP_019424875.1 Stage V sporulation protein M

WP_017689559.1 Stage V sporulation protein S

WP_036606123.1 Stage V sporulation protein T

Other sporulation proteins

WP_036607856.1 Sporulation sigma factor SigF

WP_017687309.1 Sporulation sigma factor SigG
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Whether Paenibacillus sp. strain VT 400 is more preva-
lent in individuals with acute leukemia remains to be estab-
lished. However, it is clear that the isolate may have direct 
clinical implications for patients with therapy-induced 
immunosuppression. We now intend to determine the prev-
alence of Paenibacillus sp. strain VT 400 among different 
groups of patients, as well as among patients beyond hema-
tology and bone marrow transplantation units.
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WP_047840921.1 Tellurium resistance protein TerF WP_047844301.1
WP_047843841.1
WP_047843528.1

Beta-lactamases

WP_026080972.1 Macrolide ABC transporter  
ATP-binding protein

WP_047842226.1 Metal-dependent hydrolase,  
beta-lactamase superfamily II

WP_036615192.1 Macrolide transporter WP_047842143.1 Aminoglycoside phosphotransferase

WP_047840666.1 Cephalosporin hydroxylase WP_036670493.1 Aminoglycoside adenylyltransferase

WP_047843966.1 MFS transporter WP_047840993.1 Aminoglycoside 3-N-acetyltransferase

WP_047843373.1 MFS transporter KLU58081.1 Chloramphenicol acetyltransferase

WP_047843512.1 MFS transporter WP_047841635.1 Tetracycline resistance protein TetA

WP_047844079.1 Multidrug ABC transporter permease WP_036614110.1 d-alanine-d-alanine ligase

WP_047844020.1 Multidrug ABC transporter ATP-binding protein WP_047843376.1 Dihydrofolate reductase

Table 5 Antibiotic susceptibility of Paenibacillus sp. strain 
VT 400

S sensitive, R resistant

Antibiotic Susceptibility

Amoxiclav S

Ampicillin S

Penicillin S

Vancomycin S

Cefotaxime S

Erythromycin R

Chloramphenicol R

Azithromycin R

Gentamicin S

Amikacin S

Kanamycin S

Clindamycin S

Doxycycline S

Ciprofloxacin S

Neomycin S

Tetracycline S

Trimethoprim-sulfamethoxazole R
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