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Abstract 

Background Colorectal cancer (CRC) poses a significant healthcare challenge, accounting for nearly 6.1% of global 
cancer cases. Early detection, facilitated by population screening utilizing innovative biomarkers, is pivotal for mitigat-
ing CRC incidence. This study aims to scrutinize the fecal and salivary microbiomes of CRC-positive individuals (CPs) 
in comparison to CRC-negative counterparts (CNs) to enhance early CRC diagnosis through microbial biomarkers.

Material and methods A total of 80 oral and stool samples were collected from Taleghani Hospital, Shahid Beheshti 
University of Medical Sciences, Tehran, Iran, encompassing both CPs and CNs undergoing screening. Microbial profil-
ing was conducted using 16S rRNA sequencing assays, employing the Nextera XT Index Kit on an Illumina NovaSeq 
platform.

Results Distinct microbial profiles were observed in saliva and stool samples of CPs, diverging significantly 
from those of CNs at various taxonomic levels, including phylum, family, and species. Saliva samples from CPs 
exhibited abundance of Calothrix parietina, Granulicatella adiacens, Rothia dentocariosa, and Rothia mucilaginosa, 
absent in CNs. Additionally, Lachnospiraceae and Prevotellaceae were markedly higher in CPs’ feces, while the Fusobac-
teria phylum was significantly elevated in CPs’ saliva. Conversely, the non-pathogenic bacterium Akkermansia mucin-
iphila exhibited a significant decrease in CPs’ fecal samples compared to CNs.

Conclusion Through meticulous selection of saliva and stool microbes based on Mean Decrease GINI values 
and employing logistic regression for saliva and support vector machine models for stool, we successfully developed 
a microbiota test with heightened sensitivity and specificity for early CRC detection.
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Background
Colorectal cancer (CRC) stands as a leading cause of 
cancer-related mortality in both developed and develop-
ing countries [1]. Implementation of population-based 
CRC screening has demonstrated a potential to reduce 
CRC incidence, garnering strong recommendations [3, 
4]. Notably, over 85% of CRC cases originate from pre-
malignant adenoma polyps, emphasizing the preventive 
nature of early detection [5]. The primary objective of 
CRC screening is to identify pre-symptomatic neoplastic 
lesions, thereby reducing the overall incidence through 
timely intervention and examination [6].

The prevailing CRC screening approaches involve fecal 
immunochemical tests (FIT) coupled with subsequent 
colonoscopies for positive cases, or periodic endoscopic 
procedures such as flexible sigmoidoscopy every 5 years 
or colonoscopy every 10  years [8, 9]. Ongoing consid-
erations include alternative screening methods like fecal 
DNA analysis and CT colonography [5]. However, the 
efficacy of any screening program hinges on two pivotal 
factors: compliance and accuracy [10]. Despite the suc-
cess observed in various strategies, overall individual 
compliance remains suboptimal, with rates falling below 
52% in CRC screening initiatives [5]. Therefore, there is 
a growing consensus that novel strategies, encompassing 
the amalgamation of established tests or the introduction 
of convenient screening alternatives, could significantly 
enhance population-based CRC screening adherence [11, 
12].

Remarkably, altered microbiota composition has 
emerged as a potential foundation for a highly sensitive 
and specific CRC screening test [13–18]. Beyond micro-
biota, their proteins and metabolites contribute to CRC 
pathogenesis, with reciprocal interactions influencing 
host proteins and metabolites in CRC development [19]. 
Significantly, signatures derived from the abundance 
of bacterial proteins, particularly those associated with 
signal transduction systems like sensory proteins, hold 
promise in distinguishing between healthy and diseased 
states [19].

In this context, our study represents a continuation of 
previous efforts focused on early CRC detection based 
on microbial biomarkers [15, 20, 21]. We aim to assess 
fecal and oral microbiota through 16S rRNA sequencing 
analysis, exploring the abundance and variation of path-
ogenic oral and fecal microbiota composition between 
CRC-positive individuals (CPs) and CRC-negative coun-
terparts (CNs) in the Iranian population. Additionally, we 
investigate the status of nonpathogenic microorganisms, 
including probiotics and short-chain fatty acid (SCFA)-
producing bacteria, in the feces of CPs compared to CNs. 
Ultimately, we endeavor to develop classifier models uti-
lizing oral and fecal microbiota profiles, with the intent 

of enhancing the diagnostic capabilities for early CRC 
detection with high sensitivity and specificity.

Results
Demographic results
Demographic characterization of participants with 
related p-value between CPs and CNs are presented 
in Table  1. The population study was characterized by 
similar distributions of gender, viral infection, alcohol 
consumption and dietary habit. The profession, family 
history, disease and surgical history, smoking habit and 

Table 1 Demographic characteristics of CRC positives (CPs) and 
CRC negatives (CNs)

The independent t-test was used to compare the mean of age between CRC 
and CRC negative. The Fisher exact test or exact Pearson Chi-Square was used to 
evaluate the relation between categorical variables and group

Variables Group p-value

CPs CNs

Age, mean (SD) 58.88 (15.18) 45.40 (13.04) 0.007

Gender, N (%) 0.512

 Female 12 (48.00) 5 (33.33)

 Male 13 (52.00) 10 (66.67)

Profession, N (%) 0.045

 Butler 0 (0.00) 1 (13.33)

 Employee 5 (4.00) 8 (20.00)

 Housewife 13 (48.00) 4 (26.67)

 Retired 7 (24.00) 2 (0.00)

Family history, N (%) 0.036

 No 13 (52.00) 13 (86.67)

 Yes 12 (48.00) 2 (13.33)

Disease history or surgical his-
tory, N (%)

0.018

 No 11 (44.00) 12 (80.00)

 Yes 14 (56.00) 3 (20.00)

Viral infection, N (%) 1.000

 No 23 (92.00) 15 (100.00)

 Yes 2 (8.00) 0 (0.00)

Smoking, N (%) 0.033

 No 19 (76.00) 15 (100.00)

 Yes 6 (24.00) 0 (0.00)

Alcohol consumption, N (%) 0.545

 No 24 (96.00) 15 (100.00)

 Yes

Nutrition diet, N (%) 0.225

 All food 16 (64.00) 11 (73.33)

 High fruit and vegetable 2 (8.00) 3 (20.00)

 High meat consumption 7 (28.00) 1 (6.67)

Physical activity, N (%) 0.001

 No 23 (92.00) 6 (40.00)

 Yes 2 (8.00) 9 (60.00)
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physical activity had significant differences between the 
CPs and CNs based on p-value.

16S rRNA sequencing analysis of clinical samples:
Top 10 microbes with more abundance in CPs versus CNs
We conducted a comparison of the frequency of the top 
10 microbes that were most abundant CPs, analyzing 
both fecal and oral samples, in terms of phylum, family, 
and species in comparison to CN samples (see Fig.  1). 
Notably, some of these microbes were completely absent 
in CNs, while others exhibited a significant difference in 
their presence.

In the saliva of CPs, Chloroflexi, Lactobacillaceae, Riv-
ulariaceae, Calothrix parietina, Rothia dentocariosa, and 
Rothia mucilaginosa ranked among the top 10 microbes, 
none of which were present in the saliva of CN individu-
als. Conversely, in the feces of CRC patients, Coprobacil-
laceae, Enterococcaceae, Neisseriaceae, Streptococcaceae, 
Bacteroides cellulosilyticus, Coprobacillus cateniformis, 
Porphyromonas asaccharolytica, Sphingobacterium 
bambusae, and Streptococcus vestibularis were identi-
fied among the 10 most abundant microbes at the fam-
ily and species levels, with none of them present in CN 
participants.

Furthermore, our analysis revealed a higher abun-
dance of microbes such as Fusobactria in the saliva of 
CRC patients compared to CN individuals. Addition-
ally, a significant p-value indicated a higher amount of 
Lachnospiraceae and Prevotellaceae in the stool of CPs 
compared to controls, suggesting that these microbes are 
present in both CNs and CPs, but their quantity is ele-
vated in CPs.

In the Table 2, the median and the p-value of these 10 
more abundant microbes in the saliva and feces of CRC 
patients compared to CNs regarding the phylum, family 
and species have been investigated in detail.

Non‑pathogenic microbiota
An investigation into a range of commensal microbiota, 
including Lactobacillaceae, Bifidobacteriaceae, Rumi-
nococcaceae, Lachnospiraceae, Lactobacillus, Bifidobac-
terium, Akkermansia, Roseburia, Faecalibacterium, and 
Ruminococcus, was conducted in the feces of CPs in com-
parison to CNs (see Fig. 2). Notably, among all the non-
pathogenic microbes analyzed in the stool samples, the 
genus Akkermansia and the species Akkermansia mucin-
iphila were significantly more abundant in the CN group 
than in CRC patients.

Based on microbial variables that have the least missing 
data, 24 microbes in saliva and 27 microbes in stool were 
selected. AUROC, sensitivity, specificity, PPV, NPV and 
ACC were calculated for each bacterium. For ROC analy-
sis, four different models were used, including logistic 

regression, support vector machine, naïve bayes and neu-
ral network. In Table  3 we showed which microbes are 
most important in predicting CRC. Four of them in saliva 
have the highest AUC which include Porphyromona-
daceae, Unclassified at Family level, Fusobacteria, and 
Streptococcus infantis. Also, four of the microbes in stool 
have the highest AUC, which include Lachnospiraceae, 
Proteobacteria, Nitrospirae and Escherichia albertii. Con-
fidence interval (CI) was reported for SE, SP, PPV, NPV 
and ACC.

In Fig.  3, important microbes in predicting CRC in 
saliva include Streptococcus infantis, Fusobacteria, Actin-
obacteria, Porphyromonadaceae, Streptococcus tigurinus, 
Streptococcaceae, Spirochaetes, Unclassified at Family 
level, and Unclassified at phylum level. Also, important 
microbes in predicting CRC in stool include Lachno-
spiraceae, Proteobacteria, Nitrospirae, Prevotellaceae, 
Escherichia albertii, Ruminococcaceae, Veillonellaceae, 
Clostridiaceae, and Alcaligenaceae.

Combination of selected variable microbiota based 
on mean decrease GINI model for improvement 
of the diagnostic ability for early detection of CRC 
The desired microbial variables were selected based on 
Mean Decrease GINI, and then we examined multiple 
regressions. Multiple regressions mean to use certain 
microbiota simultaneously in certain statistical models 
to predict CRC patients. Four different models including 
logistic regression, support vector machine, Naïve Bayes, 
neural network were selected along with a selection of 
microbiota based on GINI. For saliva, the logistic model 
is the best model among others due to its simplicity and 
AUC of 91%, SE of 87%, SP of 80%, PPV 87%, NPV of 80% 
and ACC of 84% (Table 4). For stool, the support vector 
machine was the best model because it has performed 
with the highest AUC of 97%, SE of 92%, SP of 93%, PPV 
of 96%, NPV of 87% and ACC of 90% compared to other 
models, even the simple logistic regression (Table 4).

ROC curves with performance of logistic regression, 
support vector machine, naïve Bayes and neural network 
models along with a selection of microbiota based on 
mean decrease GINI were demonstrated in Fig. 4. At the 
best cutoff value, this panel of bacteria could be used to 
discriminate CP patients from CN individuals.

Discussion
In this study, we conducted the first-ever examination 
of the integrated microbiome from stool and saliva sam-
ples of colorectal cancer (CRC) patients in comparison to 
healthy controls (CNs) within the Iranian population, uti-
lizing the 16S rRNA sequencing method. The utilization 
of microbiota as biomarkers for disease and health has 
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Fig. 1 The frequency of top 10 bacteria that were most abundant in oral and fecal samples of colorectal cancer positives (CPs) for phylum, family, 
and species versus colorectal cancer negatives (CNs) [# = CRC-exclusive bacteria, * = significant CRC vs. normal differences]
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Table 2 Median (first quartile, third quartile) and a p-value of each individual candidate bacteria based on abundancy

Type CRC positives CRC negatives p-value

Stool

Top family Bacteroidaceae 35,138 (20,473, 57,097) 26,441 (19,861.25, 51,036.5) 0.975

Coprobacillaceae 22,037 (22,037, 22,037) NA

Enterobacteriaceae 32,034 (11,517.5, 45,663) 26,693 (12,241, 67,296) 0.961

Enterococcaceae 21,837 (21,837, 21,837) NA

Lachnospiraceae 20,466.5 (15,082.75, 26,686.25) 9915 (8118.5, 18,518) 0.006
Neisseriaceae 21,907 (21,907, 21,907) NA

Pasteurellaceae 19,133.5 (11,658, 26,609) 3078 (3078, 3078) 0.221

Prevotellaceae 18,563 (13,833, 42,279) 71,417 (29,676.5, 106,358) 0.021
Ruminococcaceae 20,242 (13,254.25, 23,827) 22,173 (9717.5, 26,917.5) 0.946

Streptococcaceae 20,557 (245, 29,531) NA

Top species Bacteroides cellulosilyticus 16,964 (16,964, 16,964) NA

Bacteroides vulgatus 13,640 (6536, 26,760.5) 6081 (3432.75, 12,740.5) 0.090

Coprobacillus cateniformis 22,036 (22,036, 22,036) NA

Escherichia albertii 14,601 (5602.75, 24,528.5) 12,575 (4297.5, 33,527) 0.752

Haemophilus parainfluenzae 12,201.5 (6813, 17,590) NA

Porphyromonas asaccharolytica 20,356 (20,356, 20,356) NA

Prevotella copri 16,278 (3795, 24,755) 21,376 (3760, 57,922) 0.441

Sphingobacterium bambusae 14,383 (14,383, 14,383) NA

Streptococcus vestibularis 12,767 (12,767, 12,767) NA

Unclassified at Species level 70,268 (58,857.5, 79,222) 65,762 (57,502.75, 87,313.5) 0.639

Top phylum Actinobacteria 900 (396, 2108.5) 1271.5 (415.75, 2160.75) 0.770

Bacteroidetes 82,999 (32,927, 102,132.5) 89,034 (56,220.75, 104,966.25) 0.429

Firmicutes 58,043 (47,733, 72,777.5) 56,212 (38,746, 74,629.75) 0.725

Fusobacteria 788.5 (271.5, 2717.75) 13 (13, 13) 0.114

Nitrospirae 325.5 (142, 1003.25) 133 (63, 616.5) 0.124

Proteobacteria 16,907 (11,310.5, 44,244.5) 9314 (7409.25, 26,199.5) 0.053

Spirochaetes 307.5 (118, 497) NA

Tenericutes 226 (41, 1221.5) 1262 (22, 2502) 1.000

Unclassified at Phylum level 1884 (1154.5, 2477.5) 1767.5 (1278.5, 2876.75) 0.930

Verrucomicrobia 958.5 (271.25, 2273) 210 (82.75, 9329.75) 0.269

Saliva

Top family Flavobacteriaceae 6784.5 (2604.5, 8936.5) 8128 (7083, 10,112) 0.289

Gemellaceae 9110 (2739, 9895) 3722 (2054, 5392) 0.210

Lactobacillaceae 16,178 (5758, 25,449) NA

Micrococcaceae 10,796 (6851, 22,256) 5363 (5363, 5363) 0.384

Neisseriaceae 27,814 (6188, 41,674) 22,459 (9471.5, 30,426) 0.695

Porphyromonadaceae 9893 (5834, 19,547.5) 6259.5 (3340.25, 9906.75) 0.093

Prevotellaceae 30,879 (9420.5, 39,816.5) 20,346 (8663, 31,362) 0.386

Rivulariaceae 52,390 (4881, 99,899) NA

Streptococcaceae 37,934 (28,412, 47,562) 52,361 (33,431, 62,602) 0.156

Veillonellaceae 24,049.5 (9543.75, 36,522.5) 26,681 (17,955, 34,776) 0.536

Top species Calothrix parietina 52,381.5 (4878, 99,885) NA

Granulicatella adiacens 11,447 (5475, 11,609) NA

Neisseria flavescens 11,156 (6278, 16,034) 10,976.5 (7555.75, 14,895.25) 1.000

Neisseria mucosa 15,137 (9509.25, 29,842.25) 10,501 (8133, 16,335) 0.288

Neisseria subflava 12,388 (12,388, 12,388) 4749 (4749, 4749) 0.317

Prevotella melaninogenica 16,095 (12,500.5, 17,582) 12,400 (6664, 17,685) 0.273

Rothia dentocariosa 10,847 (10,847, 10,847) NA
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gained significant traction, particularly with the advance-
ments in 16S rRNA sequencing technology.

Our results, as depicted in the demographic table, 
reveal a noteworthy difference between CPs and CNs 
concerning occupation, physical activity, and smoking 
habits. Interestingly, housewives and retired individuals 
exhibited a higher prevalence of CRC compared to work-
ing and non-retired individuals. Furthermore, smoking 
and a lack of exercise were more prevalent among CP 
patients compared to CNs.

In general, the incidence of CRC tends to be higher 
in individuals over 50  years old, whereas those under 
50 years old, who typically undergo screening, are gen-
erally healthier. This age-related discrepancy is a note-
worthy factor contributing to the differences observed 
between the CP and CN groups. Additionally, the 
occurrence of CRC in individuals with a family history 
of the disease and a personal history of other illnesses 
and surgeries was more prevalent than in CNs. This 
implies that individuals with a susceptibility marked by 

Table 2 (continued)

Type CRC positives CRC negatives p-value

Rothia mucilaginosa 13,025.5 (5100.5, 20,090.75) NA

Unclassified at Species level 47,894 (43,544, 57,892) 48,100 (44,866, 54,567) 0.846

Veillonella atypica 11,240 (8108, 15,829.75) 11,364 (8764, 17,463) 0.767

Top phylum Actinobacteria 8467 (2359, 17,695) 4542 (3117, 6773) 0.097

Bacteroidetes 43,222.5 (23,659.25, 52,389.25) 30,558 (20,851, 43,199) 0.279

Chloroflexi 1037 (1037, 1037) NA

Firmicutes 76,819 (68,534, 96,665) 100,930 (72,165, 107,327) 0.263

Fusobacteria 3328 (2133, 5205) 5466 (4048, 7725) 0.018
Proteobacteria 15,284 (7899, 53,296) 31,032 (11,128, 55,320) 0.317

Spirochaetes 146 (111.25, 1249.5) 190 (112.5, 304.5) 0.847

Thermi 161.5 (64.75, 232) NA

Unclassified at Phylum level 1131 (930, 1279) 973 (807, 1028) 0.135

Verrucomicrobia 221 (91, 328.5) 134.5 (87.75, 242) 0.495

The median [interquartile range (IQR)] was reported for each bacterium. The Dunn’s test was used to test the median of each bacterium between CRC and Normal. NA 
means that some microbiotas do not have third quartile values

Significant p-values were bolded

Fig. 2 The higher abundancy of the genus Akkermansia and the species Akkermansia muciniphila among all the non-pathogenic microbes 
in the stool samples of colorectal cancer negatives versus colorectal cancer positive patients
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Table 3 The Prediction performance using logistic regression for each microbiota

Variables AUC (95% CI) Cut-off SE (95% CI) SP (95% CI) PPV (95% CI) NPV (95% CI) Accuracy (95% CI)

Saliva Neisseriaceae 0.57 (0.38, 0.76) 0.61943 0.61 (0.39, 0.80) 0.67 (0.38, 0.88) 0.74 (0.47, 0.88) 0.53 (0.31, 0.81) 0.61 (0.43, 0.76)

Prevotellaceae 0.59 (0.41, 0.78) 0.66244 0.48 (0.27, 0.69) 0.80 (0.52, 0.96) 0.79 (0.50, 0.90) 0.50 (0.29, 0.85) 0.58 (0.41, 0.74)

Streptococcaceae 0.64 (0.44, 0.83) 0.56746 0.87 (0.66, 0.97) 0.53 (0.27, 0.79) 0.74 (0.48, 0.94) 0.73 (0.44, 0.90) 0.71 (0.54, 0.85)

Veillonellaceae 0.54 (0.35, 0.73) 0.60961 0.26 (0.10, 0.48) 0.93 (0.68, 1.00) 0.86 (0.48, 0.94) 0.45 (0.21, 0.97) 0.50 (0.33, 0.67)

Unclassified at family 
level

0.70 (0.53, 0.87) 0.60513 0.61 (0.39, 0.80) 0.87 (0.60, 0.98) 0.88 (0.61, 0.95) 0.59 (0.37, 0.93) 0.71 (0.54, 0.85)

Pasteurellaceae 0.55 (0.35, 0.75) 0.63407 0.65 (0.43, 0.84) 0.53 (0.27, 0.79) 0.68 (0.40, 0.85) 0.50 (0.28, 0.76) 0.53 (0.36, 0.69)

Porphyromonadaceae 0.74 (0.58, 0.90) 0.60168 0.57 (0.34, 0.77) 0.80 (0.52, 0.96) 0.81 (0.54, 0.92) 0.55 (0.33, 0.87) 0.61 (0.43, 0.76)

Firmicutes 0.61 (0.42, 0.80) 0.57158 0.78 (0.56, 0.93) 0.53 (0.27, 0.79) 0.72 (0.45, 0.90) 0.62 (0.36, 0.84) 0.68 (0.51, 0.82)

Proteobacteria 0.60 (0.41, 0.78) 0.62610 0.65 (0.43, 0.84) 0.60 (0.32, 0.84) 0.71 (0.44, 0.87) 0.53 (0.31, 0.79) 0.63 (0.46, 0.78)

Bacteroidetes 0.60 (0.41, 0.78) 0.62585 0.57 (0.34, 0.77) 0.73 (0.45, 0.92) 0.76 (0.49, 0.89) 0.52 (0.31, 0.83) 0.63 (0.46, 0.78)

Actinobacteria 0.66 (0.48, 0.84) 0.65617 0.52 (0.31, 0.73) 0.93 (0.68, 1.00) 0.92 (0.65, 0.97) 0.56 (0.34, 0.98) 0.68 (0.51, 0.82)

Fusobacteria 0.73 (0.57, 0.89) 0.64114 0.65 (0.43, 0.84) 0.80 (0.52, 0.96) 0.83 (0.57, 0.93) 0.60 (0.37, 0.89) 0.68 (0.51, 0.82)

Unclassified at phylum 
level

0.64 (0.47, 0.82) 0.62979 0.57 (0.34, 0.77) 0.80 (0.52, 0.96) 0.81 (0.54, 0.92) 0.55 (0.33, 0.87) 0.63 (0.46, 0.78)

Verrucomicrobia 0.44 (0.24, 0.64) 0.58570 0.91 (0.72, 0.99) 0.20 (0.04, 0.48) 0.64 (0.24, 0.94) 0.60 (0.27, 0.85) 0.61 (0.43, 0.76)

Cyanobacteria 0.45 (0.26, 0.64) 0.61070 0.13 (0.03, 0.34) 1.00 (0.78, 1.00) 1.00 (0.42, 1.00) 0.43 (0.12, 1.00) 0.47 (0.31, 0.64)

Spirochaetes 0.45 (0.25, 0.65) 0.57570 1.00 (0.85, 1.00) 0.20 (0.04, 0.48) 0.66 (0.26, 1.00) 1.00 (0.43, 1.00) 0.58 (0.41, 0.74)

Unclassified at species 
level

0.52 (0.33, 0.71) 0.61704 0.43 (0.23, 0.66) 0.80 (0.52, 0.96) 0.77 (0.47, 0.89) 0.48 (0.27, 0.84) 0.55 (0.38, 0.71)

Neisseria mucosa 0.61 (0.43, 0.79) 0.62068 0.57 (0.34, 0.77) 0.80 (0.52, 0.96) 0.81 (0.54, 0.92) 0.55 (0.33, 0.87) 0.58 (0.41, 0.74)

Prevotella melanino-
genica

0.66 (0.48, 0.85) 0.58381 0.70 (0.47, 0.87) 0.60 (0.32, 0.84) 0.73 (0.46, 0.88) 0.56 (0.33, 0.81) 0.66 (0.49, 0.80)

Veillonella atypica 0.49 (0.29, 0.69) 0.59292 0.91 (0.72, 0.99) 0.27 (0.08, 0.55) 0.66 (0.31, 0.94) 0.67 (0.33, 0.87) 0.63 (0.46, 0.78)

Veillonella dispar 0.56 (0.37, 0.75) 0.59037 0.52 (0.31, 0.73) 0.67 (0.38, 0.88) 0.71 (0.43, 0.86) 0.48 (0.27, 0.77) 0.53 (0.36, 0.69)

Streptococcus tiguri-
nus

0.67 (0.49, 0.86) 0.69117 0.52 (0.31, 0.73) 0.87 (0.60, 0.98) 0.86 (0.58, 0.94) 0.54 (0.32, 0.92) 0.63 (0.46, 0.78)

Streptococcus pseudo-
pneumoniae

0.67 (0.49, 0.84) 0.72796 0.30 (0.13, 0.53) 1.00 (0.78, 1.00) 1.00 (0.63, 1.00) 0.48 (0.25, 1.00) 0.53 (0.36, 0.69)

Streptococcus infantis 0.74 (0.57, 0.90) 0.73146 0.61 (0.39, 0.80) 0.87 (0.60, 0.98) 0.88 (0.61, 0.95) 0.59 (0.37, 0.93) 0.71 (0.54, 0.85)

Stool Prevotellaceae 0.45 (0.24, 0.66) 0.59528 1.00 (0.86, 1.00) 0.21 (0.05, 0.51) 0.69 (0.29, 1.00) 1.00 (0.43, 1.00) 0.72 (0.55, 0.85)

Lachnospiraceae 0.70 (0.50, 0.89) 0.60186 0.88 (0.69, 0.97) 0.57 (0.29, 0.82) 0.79 (0.53, 0.95) 0.73 (0.44, 0.90) 0.77 (0.61, 0.89)

Ruminococcaceae 0.48 (0.26, 0.69) 0.63412 0.80 (0.59, 0.93) 0.43 (0.18, 0.71) 0.71 (0.42, 0.90) 0.55 (0.30, 0.80) 0.67 (0.50, 0.81)

Bacteroidaceae 0.54 (0.34, 0.73) 0.67614 0.28 (0.12, 0.49) 0.93 (0.66, 1.00) 0.88 (0.51, 0.95) 0.42 (0.20, 0.97) 0.51 (0.35, 0.68)

Unclassified at family 
level

0.53 (0.34, 0.72) 0.64502 0.52 (0.31, 0.72) 0.64 (0.35, 0.87) 0.72 (0.44, 0.86) 0.43 (0.24, 0.74) 0.56 (0.40, 0.72)

Enterobacteriaceae 0.60 (0.42, 0.79) 0.68041 0.40 (0.21, 0.61) 0.86 (0.57, 0.98) 0.83 (0.53, 0.92) 0.44 (0.24, 0.88) 0.56 (0.40, 0.72)

Clostridiaceae 0.57 (0.37, 0.77) 0.63297 0.72 (0.51, 0.88) 0.50 (0.23, 0.77) 0.72 (0.43, 0.88) 0.50 (0.28, 0.77) 0.64 (0.47, 0.79)

Flavobacteriaceae 0.54 (0.34, 0.73) 0.65106 0.44 (0.24, 0.65) 0.79 (0.49, 0.95) 0.79 (0.49, 0.90) 0.44 (0.24, 0.81) 0.44 (0.28, 0.60)

Alcaligenaceae 0.57 (0.39, 0.76) 0.95574 0.36 (0.18, 0.57) 1.00 (0.77, 1.00) 1.00 (0.68, 1.00) 0.47 (0.25, 1.00) 0.49 (0.32, 0.65)

Porphyromonadaceae 0.52 (0.33, 0.70) 0.68017 0.32 (0.15, 0.54) 0.93 (0.66, 1.00) 0.89 (0.55, 0.95) 0.43 (0.22, 0.97) 0.54 (0.37, 0.70)

Veillonellaceae 0.60 (0.40, 0.81) 0.63125 0.84 (0.64, 0.95) 0.43 (0.18, 0.71) 0.72 (0.43, 0.91) 0.60 (0.34, 0.83) 0.69 (0.52, 0.83)

Bacteroidetes 0.58 (0.39, 0.77) 0.68012 0.40 (0.21, 0.61) 0.79 (0.49, 0.95) 0.77 (0.47, 0.89) 0.42 (0.23, 0.80) 0.51 (0.35, 0.68)

Firmicutes 0.53 (0.33, 0.74) 0.63277 0.92 (0.74, 0.99) 0.29 (0.08, 0.58) 0.70 (0.34, 0.95) 0.67 (0.33, 0.87) 0.67 (0.50, 0.81)

Proteobacteria 0.69 (0.50, 0.88) 0.57792 0.80 (0.59, 0.93) 0.64 (0.35, 0.87) 0.80 (0.55, 0.93) 0.64 (0.40, 0.87) 0.72 (0.55, 0.85)

Unclassified at phylum 
level

0.51 (0.31, 0.71) 0.63133 0.80 (0.59, 0.93) 0.36 (0.13, 0.65) 0.69 (0.37, 0.88) 0.50 (0.27, 0.77) 0.64 (0.47, 0.79)

Actinobacteria 0.47 (0.28, 0.66) 0.70535 0.12 (0.03, 0.31) 1.00 (0.77, 1.00) 1.00 (0.42, 1.00) 0.39 (0.11, 1.00) 0.41 (0.26, 0.58)

Nitrospirae 0.64 (0.44, 0.84) 0.56291 1.00 (0.86, 1.00) 0.29 (0.08, 0.58) 0.71 (0.36, 1.00) 1.00 (0.50, 1.00) 0.74 (0.58, 0.87)

Cyanobacteria 0.44 (0.24, 0.63) 0.68098 0.12 (0.03, 0.31) 1.00 (0.77, 1.00) 1.00 (0.42, 1.00) 0.39 (0.11, 1.00) 0.44 (0.28, 0.60)

Chloroflexi 0.60 (0.42, 0.79) 0.59631 0.64 (0.43, 0.82) 0.64 (0.35, 0.87) 0.76 (0.49, 0.89) 0.50 (0.29, 0.79) 0.62 (0.45, 0.77)
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Table 3 (continued)

Variables AUC (95% CI) Cut-off SE (95% CI) SP (95% CI) PPV (95% CI) NPV (95% CI) Accuracy (95% CI)

Verrucomicrobia 0.48 (0.28, 0.68) 0.64675 0.68 (0.46, 0.85) 0.43 (0.18, 0.71) 0.68 (0.38, 0.85) 0.43 (0.23, 0.71) 0.59 (0.42, 0.74)

Unclassified at species 
level

0.55 (0.34, 0.75) 0.64183 0.60 (0.39, 0.79) 0.64 (0.35, 0.87) 0.75 (0.47, 0.88) 0.47 (0.27, 0.77) 0.59 (0.42, 0.74)

Prevotella copri 0.46 (0.26, 0.67) 0.61832 1.00 (0.86, 1.00) 0.07 (0.00, 0.34) 0.66 (0.04, 1.00) 1.00 (0.20, 1.00) 0.64 (0.47, 0.79)

Bacteroides vulgatus 0.55 (0.35, 0.76) 0.64071 0.56 (0.35, 0.76) 0.64 (0.35, 0.87) 0.74 (0.46, 0.87) 0.45 (0.26, 0.76) 0.56 (0.40, 0.72)

Escherichia albertii 0.64 (0.45, 0.83) 0.55030 0.80 (0.59, 0.93) 0.50 (0.23, 0.77) 0.74 (0.46, 0.91) 0.58 (0.34, 0.82) 0.67 (0.50, 0.81)

Bacteroides fragilis 0.56 (0.36, 0.76) 0.66099 0.48 (0.28, 0.69) 0.79 (0.49, 0.95) 0.80 (0.51, 0.90) 0.46 (0.26, 0.83) 0.51 (0.35, 0.68)

Higher than 0.7 for AUCs were selected and bolded

Fig. 3 Mean Decrease GINI model for colorectal cancer prediction. Higher mean decreases in GINI for bacteria show that bacteria are more 
important in predicting CRC. *The Mean Decrease GINI presents those microbes that have the highest amount in GINI, their removal makes 
the model worse in the direction of predicting CRC and their presence helps the model to be powerful

Table 4 The Prediction performance using logistic regression with selected variables for each microbiota

Variables AUC (95% CI) Cut-off SE (95% CI) SP (95% CI) PPV (95% CI) NPV (95% CI) Accuracy (95% CI)

Saliva Logistic-total variables 1.00 (1.00, 1.00) 1.00 1.00 (0.85, 1.00) 1.00 (0.78, 1.00) 1.00 (0.85, 1.00) 1.00 (0.79, 1.00) 0.39 (0.24, 0.57)

Logistic-selected variable 0.91 (0.82, 1.00) 0.60 0.87 (0.66, 0.97) 0.80 (0.52, 0.96) 0.87 (0.64, 0.97) 0.80 (0.54, 0.96) 0.84 (0.69, 0.94)

Support vector machine 0.90 (0.77, 1.00) 0.57 0.91 (0.72, 0.99) 0.87 (0.60, 0.98) 0.91 (0.70, 0.99) 0.87 (0.61, 0.98) 0.87 (0.72, 0.96)

Naïve Bayes 0.93 (0.84, 1.00) 0.10 0.91 (0.72, 0.99) 0.87 (0.60, 0.98) 0.91 (0.70, 0.99) 0.87 (0.61, 0.98) 0.89 (0.75, 0.97)

Neural network 0.64 (0.44, 0.83) 0.56 0.87 (0.66, 0.97) 0.53 (0.27, 0.79) 0.74 (0.48, 0.94) 0.73 (0.44, 0.90) 0.71 (0.54, 0.85)

Stool Logistic-total variables 1.00 (1.00, 1.00) 1.00 1.00 (0.86, 1.00) 1.00 (0.77, NA) 1.00 (0.86, 1.00) 1.00 (0.78, 1.00) 0.36 (0.21, 0.53)

Logistic-selected vari-
ables

0.77 (0.59, 0.96) 0.58 0.76 (0.55, 0.91) 0.79 (0.49, 0.95) 0.86 (0.63, 0.95) 0.65 (0.41, 0.91) 0.77 (0.61, 0.89)

Support vector machine 0.97 (0.92, 1.00) 0.67 0.92 (0.74, 0.99) 0.93 (0.66, 1.00) 0.96 (0.78, 1.00) 0.87 (0.62, 1.00) 0.90 (0.76, 0.97)

Naïve Bayes 0.78 (0.61, 0.94) 0.76 0.60 (0.39, 0.79) 0.93 (0.66, 1.00) 0.94 (0.69, 0.97) 0.57 (0.35, 0.98) 0.69 (0.52, 0.83)

Neural network 0.45 (0.24, 0.66) 0.61 1.00 (0.86, 1.00) 0.21 (0.05, 0.51) 0.69 (0.29, 1.00) 1.00 (0.43, 1.00) 0.69 (0.52, 0.83)
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a history of other diseases and surgeries are more pre-
disposed to CRC than those without such histories.

The notable observation of distinct microbial pro-
files between CPs and CNs highlights a significant 
aspect, suggesting that the microbiome may play a 
crucial role in the initiation and development of CRC. 
For instance, certain microbial patterns were found 
to be significantly more abundant in CRC patients 
compared to CNs, with specific examples including 
Chloroflexi, Lactobacillaceae, Rivulariaceae, Calothrix 
parietina, Rothia dentocariosa, and Rothia mucilagi-
nosa, which exhibited higher abundancy in the saliva of 
CRC patients but were entirely absent in CN individu-
als. Similarly, Coprobacillaceae, Enterococcaceae, Neis-
seriaceae, Streptococcaceae, Bacteroides cellulosilyticus, 
Coprobacillus cateniformis, Porphyromonas asaccha-
rolytica, Sphingobacterium bambusae, and Streptococ-
cus vestibularis were identified as the most abundant 
microbes in the feces of CRC patients, whereas they 
were absent in CN individuals.

While our findings suggest a compelling association 
between the presence or absence of certain microbes and 
CRC, it is essential to conduct studies on a larger popu-
lation to provide more definitive insights. Our results 
align with the research by Flemer et al. [18], who identi-
fied 63 operational taxonomic units (OTU) distinguish-
ing CRC cases from CNs, including 29 oral OTU and 34 
stool OTU. Additionally, our findings are consistent with 
previous studies that have highlighted the ability of spe-
cific microbiota to differentiate individuals with CRC or 
adenoma polyps from healthy individuals.

Notably, research conducted across various geographi-
cal regions such as the USA, Canada, Ireland, Spain, 
China, Colorado, France, and India has explored the 
increased presence of bacteria in CRC. Despite differ-
ences in ethnicity and geography influencing microbial 
patterns, it is intriguing that many of the microbes identi-
fied in these studies closely correlate with those increased 
in our CRC patients, including Fusobacterium, Porphy-
romonas, Prevotella, Bacteroides, and Streptococcus [18, 
22–28].

Identifying a group of microbes with higher abun-
dance in CPs than in healthy CNs and demonstrating 
statistical significance is crucial, as it facilitates the selec-
tion of potential biomarker candidates. In our study, we 
observed an increased number of Fusobacteria in the 
saliva of CRC patients compared to CNs, as well as a 
higher abundance of Lachnospiraceae and Prevotellaceae 
in the stool of CRC patients compared to CNs. Consist-
ent with our findings, Flemer et al. reported differential 
abundance of certain oral microbiotas between CPs and 
CNs, including Parvimonas, Haemophilus, Prevotella, 
Alloprevotella, Neisseria, Lachnoanaerobaculum, and 
Streptococcus [18].

Furthermore, non-pathogenic microbiota in the human 
gut or microbiota that produces short-chain fatty acids 
(SCFA) play a crucial role in human health and disease 
prevention [29]. In our research, Akkermansia muciniph-
ila showed significantly higher abundance in CNs com-
pared to CPs. Akkermansia muciniphila is an important 
bacterium that degrades mucin in the gut, and its role is 
debated regarding whether it is beneficial or harmful [30]. 

Fig. 4 ROC curves with performance of logistic model, support vector machine, naïve bayes and neural network models using selected variables
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Patients with conditions such as overweight, obesity, type 
2 diabetes [31], and inflammatory bowel disease (ulcera-
tive colitis and Crohn’s disease) [33, 34] have exhibited 
reduced levels of Akkermansia muciniphila in their intes-
tines. In contrast to our findings, Wang et  al. reported 
that Akkermansia muciniphila exacerbated the develop-
ment of colitis-associated CRC in mice [35]. However, 
similar to our study, Gu et al. concluded that an increased 
number of Akkermansia muciniphila is associated with 
protection against inflammatory bowel disease (IBD) and 
CRC following interventions with nutrients, prebiotics, 
probiotics, and medications [36]. They noted that despite 
these therapeutic benefits, some animal studies, such as 
Wang et al.’s experiment, have reported a negative associ-
ation with Akkermansia muciniphila [35, 36]. Therefore, 
it is advisable to consider Akkermansia muciniphila as 
both a "friend and foe" until additional research and clini-
cal examinations provide further clarity.

A limitation of this study is the small sample size 
of the cohort, which lacks geographical coverage and 
broader applicability of the microbiome-based biomarker 
approach. Validation and confirmation of these find-
ings would benefit from a larger population. Addition-
ally, there is an age difference between the CPs and CNs, 
which we have attempted to minimize for future studies.

Furthermore, utilizing a combination of selected varia-
ble microbiota based on the Mean Decrease GINI model 
platform, we aimed to enhance the diagnostic ability for 
the early detection of CRC. For saliva, logistic regres-
sion emerged as the optimal model due to its simplicity, 
boasting an AUC of 91%, sensitivity of 87%, specificity of 
80%, PPV of 87%, NPV of 80%, and an ACC of 84%. In 
contrast, for stool, the support vector machine outper-
formed other models, achieving the highest AUC of 97%, 
sensitivity of 92%, specificity of 93%, PPV of 96%, NPV of 
87%, and ACC of 90%.

In previous studies, we examined fecal samples of CRC 
and polyps’ cases versus normal individuals in the Iranian 
population, employing three models of logistic regres-
sion, simple linear combination, and factor with the 
q-PCR method, ultimately determining specific biomark-
ers [15]. We identified elevated counts of F. nucleatum, 
Enterococcus faecalis, Streptococcus bovis, Enterotoxi-
genic Bacteroides fragilis, and Porphyromonas spp. in 
CRC stages 0 and I, as well as in adenoma polyps’ cases, 
specifically in tubular adenomas and notably in villous 
and tubovillous adenomas. This contrasts with samples 
from normal, hyperplastic, and sessile serrated adenoma 
groups.

However, in the current study, we investigated the 
entire fecal and saliva microbiota of CRC patients and 
CNs in the Iranian population using the 16S rRNA 
sequencing technique. Statistical modeling was not 

limited to stool but extended to saliva as well. Sensitiv-
ity and specificity were determined, and biomarker can-
didates were selected. In parallel with our study, Flemer 
et  al. [18] identified 16 oral microbiota OTUs that dis-
tinguished CRC patients from CN individuals with a 
sensitivity of 53% and specificity of 96%. Their model’s 
sensitivity to using fecal microbiota to distinguish CRC 
patients was 22% with a specificity of 95%. However, with 
the combination of oral and stool microbiota, the model’s 
sensitivity increased to 76% for CRC detection.

Furthermore, an identical set of biomarkers between 
our study and the studies of Yuan et al., Deng et al., and 
Choi et  al. included Bacteroides, Prevotella, Fusobacte-
rium nucleatum, and Veillonella dispar [37–39]. By com-
paring the differences and similarities between our study 
and these findings, we emphasize the necessity of inves-
tigating a large cohort consisting of different geographi-
cal populations of CP and CN individuals from Europe, 
Asia, and America to comprehensively compare the 
microbiome.

Conclusion
Our findings indicate that both oral and fecal microbiota 
have the potential to differentiate individuals with CPs 
from CNs. Additionally, our study revealed a reduction in 
the abundance of Akkermansia muciniphila in the stool 
of patients with CRC. This raises the question of whether 
these microbes play a crucial role in maintaining health, 
and their diminished presence may be associated with 
the pathogenesis of CRC.

Given these observations, further research into the cel-
lular and molecular mechanisms of Akkermansia mucin-
iphila is warranted and should be conducted extensively. 
Moreover, we recommend larger prospective studies that 
encompass diverse geographical populations with vary-
ing diets. These studies should incorporate the analysis of 
FIT, fecal microbiota, and oral microbiota composition to 
validate the promising results obtained in our study.

Methods
Study population
The current study follows a case–control design, and 
clinical samples, including saliva and stool (n = 80), were 
gathered from participants who underwent colonoscopy 
at Taleghani Hospital in Tehran, Iran, between 2020 and 
2021. All participants volunteered to take part in the 
study, and samples were obtained prior to the colonos-
copy procedure. Those enrolled in the study presented 
symptoms such as rectal bleeding, changes in bowel 
movements, abdominal pains, and anemia, prompting 
their initial screening. CN individuals also underwent the 
screening test, and their colonoscopy results indicated 
normal findings. The inclusion and exclusion criteria are 
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thoroughly detailed in our recently published article [16]. 
Additionally, demographic information for the studied 
groups was collected through questionnaire forms.

Stool and saliva samples collection, storage, and extraction
Fecal samples were collected before colonoscopy, at 
a point when the gut microbiota had returned to base-
line levels [15, 20]. These stool samples were preserved 
at − 80 °C at Taleghani Hospitals until subsequent analy-
sis. Similarly, saliva samples were stored at − 80 °C until 
utilized in the experiments. The comprehensive protocol 
for sample collection has been detailed in our prior study 
[16].

Patients underwent diagnosis through colonoscopy and 
histopathological review of any biopsy. For oral speci-
mens, thawing was done on ice, and Genomic DNA was 
extracted using the QIAamp DNA Microbiome Kit from 
Qiagen (Hilden, Germany). In parallel, stool specimens 
were thawed, and DNA extraction was carried out using 
the QIAamp DNA Fecal Mini Kit (Qiagen), following the 
procedures explained earlier [21, 22].

PCR amplification and sequencing
The gene specific sequences applied here target the 
16S rRNA V3 and V4 regions using primers: a forward 
(5′TCG TCG GCA GCG TCA GAT GTG TAT A AGA GAC 
AGC CTA CGGGNGGC WGC AG3′) and a reverse 
(5′GTC TCG TGG GCT CGGAG ATG TGT ATA AGA GAC 
AGG ACTACHVGGG TAT CTA ATC C3′). The 25 µL 
PCR was set up as follow: 12.5 µL per sample 2xKAPA 
HiFi HotStart Ready Mix, 5 µL forward primer (1 µM), 
5 µL reverse primer (1 µM), and 2.5 µL genomic DNA 
of bacteria (5 ng/µL in 10 mM Tris pH 8.5). The thermal 
cycling situation for amplification of PCR was as follows: 
initial incubation step at 98 °C for 3 min, 30 denaturation 
cycles at 94 °C for 30 s, annealing step at 55 °C for 30 s, 
extension at 72 °C for 30 s, and a final extension at 72 °C 
for 5 min [16]. Then, 1 µL of PCR product was run on a 
BioanalyzerDNA 1000 chip to verify the size. Using the 
V3 and V4 primer pairs in current study, the expected 
size on a Bioanalyzer trace after the Amplicon PCR step 
is ~ 550 bp. Amplicon product purification was done with 
AMPure XP beads based on the manufacturer’s proto-
col to remove contaminants and PCR artifacts. Purified 
amplicons were utilized to construct the library based on 
standard protocols, and sequencing was done using the 
Nextera XT Index Kiton on an Illumina NovaSeq plat-
form (Illumina, San Diego, CA, USA) [16].

Demultiplexed raw sequences were imported into 
QIIME2 v.2022-2 [40] and were denoised and clus-
tered using DADA2 [41]. Taxonomy classification was 
done using the pre-trained, via scikit-learn [42], SILVA 
[43] with 138 99% full-length sequences. The resulting 

amplicon sequence variant (ASV) table, taxonomy 
assignment, and appropriate metadata were applied as 
input for the Marker Data Profiling module of the online 
platform Microbiome Analyst [44]. Features with low 
counts (< 4 and < 20% prevalence in samples, n = 1815) 
along with those with low variance (based on interquar-
tile range, n = 25) were excluded from the downstream 
analyses counts were normalized using Total Sum Scaling 
(TSS).

Statistical analysis
Descriptive statistics were presented using mean ± stand-
ard deviation (SD) and median (interquartile range 
[IQR]) for quantitative data by group (CNs and CPs). The 
independent t-test was applied to compare the mean of 
age between CRC and normal groups. The Fisher exact 
test or exact Pearson Chi-Square was used to evaluate the 
relation between categorical variables and group. Bar-
plots were utilized to show the frequency of microbiota 
and compare them between the CPs and CNs groups. The 
"*" symbol in barplots represents statistically significant 
differences between CRC samples and normal samples, 
while the "#" symbol highlights CRC-exclusive bacteria. 
Analyses were conducted applying SPSS (version 26) and 
R (version 4.2.1). p-values less than 0.05 were assumed as 
statistically significant.

Machine learning algorithm
In current study, subjects were randomly divided into 
two groups: training specimens (70% of samples) and 
validation specimens (30% of samples). Models were 
created based on training data and tested based on vali-
dation data. It is possible for a patient to appear in only 
one sample, depending on which sample was used. Data 
in training was used to expand models including logistic 
regression (LR), naive baye (NB), support vector machine 
(SVM), and neural network (NN) [45–47].

Tune parameters
Each of the methods described here has a number of 
parameters associated with it, and it is crucial that the 
most appropriate parameter be selected in order to pro-
duce both the optimal and minimal model. In order to 
accurately predict diseases, each algorithm was fine-
tuned. The fivefold cross validation was used with ten 
iterations to tune each machine learning algorithm, uti-
lizing available statistical codes and R packages.

Performance evaluation
An area under Receiver Operating Characteristics (ROC) 
curve (AUC) was used to estimate and compare mod-
els, followed by sensitivity, specificity, positive predic-
tive values (PPV), negative predictive values (NPV), and 
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accuracy (ACC). AUC was used as the criteria for select-
ing the most effective model for clinical decision-making. 
The ROC curve depicts the sensitivity and specificity of 
different diagnostic tests. There is no discrimination for 
example the ability to diagnose cases with or without a 
disease at AUC 0.5, 0.7–0.8 is acceptable, 0.8–0.9 is excel-
lent, and more than 0.9 is exceptional [48]. Sensitivity 
is defined as the percentage of patients with the disease 
predicted in the model to be patients with the disease. 
The model must be able to nicely recognize all CRC cases 
in regard to attain 100% sensitivity. The specificity of the 
model refers to the percentage of cases without the CRC 
who will be predicted to be CNs as a result of the model. 
The model should nicely recognize all CNs in order to be 
100% specific. PPP refers to the percentage of CRC cases 
who were speculated to have CRC who really have it. 
NPV refers to the proportion of individuals speculated as 
CNs that really do not have CRC. A prediction’s ACC is 
assessed by dividing the number of correct predictions by 
the number of observations.

Selection variable
A Random Forest technique was used in regard to char-
acterize the importance of the variable based on the 
mean decrease in GINI. Higher mean decreases in GINI 
for gut bacteria show that bacteria are more important in 
predicting CRC [49]. A fivefold cross-validation method 
with 10 iterations was applied to tune the parameters of 
the random forest.
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