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The pathogenic intestinal spirochaete Brachyspira
pilosicoli forms a diverse recombinant species
demonstrating some local clustering of related
strains and potential for zoonotic spread
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Abstract

Background: Brachyspira pilosicoli is an anaerobic spirochaete that can colonizes the large intestine of many host
species. Infection is particularly problematic in pigs and adult poultry, causing colitis and diarrhea, but it is also
known to result in clinical problems in human beings. Despite the economic importance of the spirochaete as an
animal pathogen, and its potential as a zoonotic agent, it has not received extensive study.

Methods: A multilocus sequence typing (MLST) method based on the scheme used for other Brachyspira species
was applied to 131 B. pilosicoli isolates originating from different host species and geographical areas. A variety of
phylogenetic trees were constructed and analyzed to help understand the data.

Results: The isolates were highly diverse, with 127 sequence types and 123 amino acid types being identified.
Large numbers (50-112) of alleles were present at each locus, with all loci being highly polymorphic. The results of
Shimodaira-Hasegawa tests identified extensive genetic recombination, although the calculated standardized index
of association value (0.1568; P <0.0005) suggested the existence of some clonality. Strains from different host
species and geographical origins generally were widely distributed throughout the population, although in nine of
the ten cases where small clusters of related isolates occurred these were from the same geographical areas or
farms/communities, and from the same species of origin. An exception to the latter was a cluster of Australian
isolates originating from pigs, chickens and a human being, suggesting the likelihood of relatively recent
transmission of members of this clonal group between species.

Conclusions: The strongly recombinant population structure of B. pilosicoli contrasts to the more highly clonal
population structures of the related species Brachyspira hyodysenteriae and Brachyspira intermedia, both of which are
specialized enteric pathogens of pigs and poultry. The genomic plasticity of B. pilosicoli may help to explain why it
has been able to adapt to colonize the large intestines of a wider range of hosts compared to other Brachyspira
species. The identification of a clonal group of isolates that had been recovered from different host species,
including a human being, suggests that zoonotic transmission by B. pilosicoli may occur in nature. Evidence for local
transmission between the same host species also was obtained.
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Introduction

The genus Brachyspira includes seven officially named and
several unofficially named species of anaerobic spirochaetes
that colonize the large intestine of mammals and birds [1].
The three most commonly reported pathogenic species are
Brachyspira hyodysenteriae, the agent of swine dysentery,
Brachyspira intermedia, a pathogen mainly of adult chick-
ens, and Brachyspira pilosicoli, the cause of a condition that
has been called ‘intestinal spirochaetosis’. B. pilosicoli has a
broader host range than the other two main pathogenic
species, colonizing various species of mammals and birds,
as well as human beings [2,3].

Infections with B. pilosicoli are particularly common in
intensively housed pigs and chickens, in which they cause
depressed rates of growth and production. Colonization
also commonly occurs in human beings living in crowded
and unhygienic conditions in developing countries [4-7],
as well as amongst homosexual males [8]. Individuals
colonized with B. pilosicoli may develop focal colitis and
chronic diarrhoea, with abdominal pain, failure to thrive
and rectal bleeding. An in vitro study using Caco-2 cells
has shown that B. pilosicoli strains initially target the cell
junctions, where one cell end of the spirochaete invaginates
into the Caco-2 cell membranes [9]. The whole cell surface
progressively becomes colonized by attached spirochaetes,
forming a “false brush border”. In this model colonized
monolayers demonstrated accumulation of actin at the cell
junctions, loss of tight junction integrity, condensation and
fragmentation of nuclear material consistent with apoptosis,
and a significant up-regulation of interleukin-1lbeta and
interleukin-8 expression. Besides colitis, a spirochaetaemia
with B. pilosicoli has been recorded in immunocom-
promised or debilitated human beings [10,11], and systemic
spread involving the liver also has been described in
experimentally infected chickens [12].

B. pilosicoli may be found in water contaminated
with faeces and on foodstuffs, and hence has potential
importance as a water-borne or food-borne zoonotic
pathogen [5,13,14].

Earlier studies using multilocus enzyme electrophoresis
(MLEE) have suggested that B. pilosicoli is a recombinant
species [2], and that cross-species transmission is likely
to occur [3]. A similar MLEE study with the related B.
hyodysenteriae also suggested that this species is re-
combinant with an epidemic population structure [15];
however, more recent studies using multilocus sequence
typing (MLST) have indicated that B. hyodysenteriae has a
clonal population structure [16,17], as does B. intermedia
[18]. These results now have left some uncertainty about
the likely population structure of B. pilosicoli.

In an earlier genus-wide MLST study of Brachyspira
species, 12 strains of B. pilosicoli were included in the
analysis [19]; however, this was too few to deduce the
population structure, and there have been no subsequent
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reports where MLST has been used to analyze B. pilosicoli
isolates. Consequently the overall aim of the current study
was to apply the previously developed but incomplete
brachyspira MLST system to a large and diverse collection
of B. pilosicoli strains to improve understanding of diversity,
population structure, host-specificity and geographical
links between strains.

Results and discussion

In this study 131 B. pilosicoli strains and isolates from
various countries and animal species that had been col-
lected over three decades were used in an MLST scheme
for B. pilosicoli. Between 50-112 alleles were identified at
the seven MLST loci tested, and a total of 127 sequence
type (ST) profiles were obtained (ST01 to ST127). These
results demonstrated that high rates of genetic variation
occur within the population. The data are summarized in
Table 1, with allelic profiles for individual strains shown
in Additional file 1: Table S1. The raw sequence data
were deposited at the PubMLST site (http://pubmlst.org/
brachyspira/). After the translation of nucleotides into
amino acids, 16-72 alleles were identified at the various
loci and 123 amino acid type (AAT) profiles were present
(Table 1).

The mean genetic diversity (h value) was 0.977, with
diversity at the individual loci varying from 0.913 to 0.989
(Table 1). The extensive diversity that was identified in the
population agreed with the results of the earlier MLEE
study on B. pilosicoli [2]. Multilocus variable number
tandem repeat analysis of B. pilosicoli also has shown
considerable diversity, but the frequent occurrence of null
alleles limits the use of the technique for detailed analysis
of relationships between isolates [20].

The results of the Shimodaira-Hasegawa (SH) test for
the seven loci are recorded in Additional file 2: Table S2,
and they indicate that each tree had the best topology to
explain the genetic relationship of the loci tested. The 35
concatenated trees constructed by using different combi-
nations of three alleles were distinctively different from
each another. Results for the four trees that showed the
greatest difference are presented in Additional file 3:
Table S3. These SH tests indicated that there is substantial
recombination in the evolutionary history of B. pilosicoli,
and that each gene analyzed was independently evolving.
Thus, for each gene there was a significant difference in
the A - In L values of each tree and, furthermore, for each
of the seven genes the maximum likelihood (ML) trees
were no more similar in likelihood than the 200 random
trees for each data set. Hence significant phylogenetic
incongruence was revealed, implying that frequent recom-
bination has obscured phylogenetic signals expected from
direct inheritance of genes in the population.

The standardized index of association (I°,) value was
calculated as 0.1568 (P < 0.0005), with a small but significant
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Table 1 Number of alleles, genetic diversity, GC content, and variable sites at the seven loci tested

Loci No. of alleles h value Sequence No. of variable Variable % G+C Ln No. of amino
length sites sites% content Likelihood acids

adh 50 0913 347 114 329 415 -183341711 24

alp 90 0.989 648 294 454 344 -5659.75171 67

est 95 0.989 498 419 84.1 34.2 -8054.48965 68

gdh 64 0.983 412 56 136 343 -1839.28238 16

glp 77 0.988 686 170 24.8 328 -3783.80503 38

pgm 112 0.986 743 377 50.7 33.1 -5930.31493 72

thi 90 0.992 745 630 84.6 392 -11915.65273 71

Mean h value 0977

linkage disequilibrium being present in the population.
The values are listed in Table 2. Despite the evidence for
the population being recombinant, the value suggested
that there was a limited degree of clonality within the spe-
cies that was not masked by high rates of recombination.
Consistent with this, all trees that were constructed showed
deep branching but with a few small clusters of related
isolates (see Additional file 4: Figure S1 as an example).
Clustering could be most easily seen in a minimum
spanning (MS) tree, which also is marked in colour to
show the species of origin (Figure 1) and geographical
origin (Figure 2).

The MS tree was divided into two main but linked
parts, with more strains and STs located on the right
hand side than on the left. Generally isolates from the
same species and geographical origins were distributed
throughout the tree, although all the isolates from chickens
were located on the right hand side. This distribution might
have been influenced by the relatively restricted range of
isolates available for analysis, and more robust results will
be obtained when more B. pilosicoli strains from different
hosts and geographic areas are added to the PubMLST
database. There was a limited degree of clustering of
isolates (nine clusters: defined as isolates with allelic differ-
ences at only one or two loci), and in all but one case
where this occurred the clustered isolates were from the
same species and from the same geographical origin or
farm/community. Hence they are likely to have repre-
sented a clonal group that has been transmitted locally.
The exception was the largest cluster around ST68 that
consisted of isolates from dispersed geographical locations
in Australia, and from different host species. This cluster
consisted of a isolate from a human child in the Kimberley
region in the north of Western Australia, an isolate from a

pig in Victoria, two isolates from pigs in the same piggery
in the southwest of Western Australia, and two isolates
from chickens in Queensland. The occurrence of isolates
from one cluster in different species does suggest the
possibility of recent cross-species transmission, although
it is unlikely to have occurred recently in this case due to
the wide geographical distances between the sites where
the isolates originated. Possible mechanisms would be
transmission through migratory bird species, or mechanical
transmission associated with human activities.

By contrast to B. pilosicoli, when using MLST the species
B. hyodysenteriae and B. intermedia both have been
deduced to be essentially clonal [16,18]. Hence these three
important pathogenic species in the same genus have
different population structures. One interpretation could
be that the latter two species have evolved relatively
recently from single stable strains or clones that were
derived from a highly recombinant ancestral species such
as B. pilosicoli, and which have been successful in finding
suitable specialized niches in specific host species. Another
possibility could be that the recombinant B. pilosicoli
developed from a more stable clonal ancestor following
development or acquisition of more effective means for
gene transfer and recombination.

The source of the variation amongst Brachyspira species
and strains is of considerable interest. Based on the high
degree of conservation in the 16S rDNA sequences of the
Brachyspira species it has been suggested that they have
evolved relatively recently [1]. The location of the seven
loci used in the MLST scheme mapped on seven complete
Brachyspira genomes is shown as Figure 3. Not only do
the relative positions of the loci vary greatly between
species, but there are also remarkable differences between
the locations in the four sequenced B. pilosicoli strains.

Table 2 Index of association values generated in the START2 program

. e S
Index of association Vo Ve Ia IPa

Mean trial variance Max trial variance 5% critical value

0.2667 0.1366 09516 0.1568

0.1367 0.1459 0.1399

Abbreviations; V,, observed variance, V, expected variance, I, index of association, I°, standardized index of association.
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Figure 1 Minimum spanning tree showing the MLST profiles of 131 Brachyspira pilosicoli strains with the host species of origin
marked. Each node corresponds to a sequence type (ST). The lines between STs show inferred phylogenetic relationships and are represented by
bold, continuous, continuous thin, dashed and dotted lines according to the number of allelic mismatches between profiles (1, 2, 3,4 and 5 or
more, respectively). Host species of origin are indicated with coloured text (human (red circle), pig (black circle), chicken (blue circle), dog
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These extensive genomic rearrangements within and across
species demonstrate the plasticity of Brachyspira genomes.
One potential means for recombination may be the
activity of bacteriophage-like gene transfer agents (GTA)
that have been detected in various Brachyspira species,
and which have the potential to facilitate gene transduction
within or possibly even across species [21-23]. In addition,
in the case of B. pilosicoli, recent analysis of the genomes of
three sequenced strains identified genome rearrangements
that largely correlated with the positions of mobile genetic
elements [24]. Novel bacteriophages also were detected
in the newly sequenced genomes, and clearly such genetic
elements may have the potential to transduce genetic
information and contribute to the recombination that has

been recorded here. Interestingly the sizes of the genomes
of three sequenced B. pilosicoli strains (B2904, WesB and
95/1000) were ~2,765, 2.890 and 2.596 Mb, respectively
[24], while the genome of strain P43/6/78" has been
recorded as 2.56 Mb [25]. This variation in genome size
with accompanying loss or gain of genes provides clear
evidence for the genomic plasticity of B. pilosicoli.

Conclusions

This study has confirmed that B. pilosicoli has a strongly
recombinant population structure that contrasts to the
more highly clonal population structures of the related
pathogenic species B. hyodysenteriae and B. intermedia.
Brachyspira species showed evidence of extensive
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Figure 2 Minimum spanning tree showing the origin of the B. pilosicoli strains. The country of isolation is shown in coloured text (Australia
(red circle), Sweden (black circle), Papua New Guinea (blue circle), USA (violet circle), Canada (green circle), Italy (light blue circle), France
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Figure 3 Genome maps of B. hyodysenteriae WA1, B. intermedia PWS/A, B. murdochii DSM 12563 and the four publically available complete
Brachyspira pilosicoli genomes (95/1000; B2904; P43/6/78"; WesB) showing the relative positions of the seven genes targeted for MLST.
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rearrangement of MLST loci on their genomes, including
across four previously sequenced B. pilosicoli strains. The
greater genomic plasticity of the recombinant B. pilosicoli
may help to explain why it can colonize the large intestines
of a wider range of hosts compared to other Brachyspira
species. The MLST system that was used was sufficiently
sensitive to be able to detect a number of instances where
closely related strains (clones) of B. pilosicoli were present
in individual animals or people from the same farms or
communities, as well as providing evidence for the potential
for cross-species and zoonotic transmission by related
B. pilosicoli strains.

Methods

Brachyspira pilosicoli strains and isolates

A total of 119 well-characterized strains and isolates of
B. pilosicoli were obtained as frozen stock from the
culture collection at the Reference Centre for Intestinal
Spirochaetes at Murdoch University. They originated from
different States of Australia (n=66), Papua New Guinea
(n=29), the United States of America (n=38), Canada
(n=5), Italy (n =5), the United Kingdom (n = 3), France
(n=2) and New Zealand (n=1). Sequence data for 12
Scandinavian and European strains (AN4170/01, AN991/02,
AN76/92, AN497/93, C62, AN984/03, AN1085/02, AN652/
02, AN2248/02, AN738/02, AN953/02 and C162) that
were previously used in a Brachyspira genus-wide MLST
study [19] were obtained from the PubMLST website
(http://pubmlst.org/) and were included in this analysis.

The full collection, representing 131 isolates, came from
a range of species, and consisted of 58 from pigs, 44 from
human beings, 24 from chickens, five from dogs and two
from horses. The names and origins of the isolates are
listed in Additional file 1: Table S1. The identity of the
isolates was confirmed using a species-specific PCR for
B. pilosicoli incorporating 16S rDNA primers [26].

Spirochaete culture and DNA extraction

The spirochaetes were propagated at 37°C for 5 days in
Kunkle’s pre-reduced anaerobic broth containing 2% foetal
bovine serum and a 1% ethanolic cholesterol solution [27].
Cells were harvested from culture by centrifuging at
10,000 g, and counted in a haemocytometer chamber under
a phase contrast microscope at 40 times magnification.

For each strain, 10 ml of Trypticase Soy broth con-
taining ~10® cells/ml of B. pilosicoli was centrifuged at
5000 g. The supernatant was discarded and the pellet
resuspended in an equal volume of phosphate buffered
saline (pH 7.4) and heated at 95°C for 15 min to release
the DNA, before storing at -20°C. The solution containing
the extracted DNA was used as the template for the PCR
reactions.

Multilocus sequence typing (MLST)

The seven loci used in MLST were the same as those
previously described for use with members of the genus
Brachyspira [19]. These were the genes encoding for the
conserved “housekeeping” genes alcohol dehydrogenase
(adh), alkaline phosphatase (alp), esterase (est), glutamate
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dehydrogenase (gdh), glycerol kinase (glpK), phosphogluco-
mutase (pgm), and acetyl-CoA acetyltransferase (t4i). The
PCR primers used were the same as those used previously
[16]. To confirm the conservation of these loci their
positions were plotted on genomes of the available single
strains of B. hyodysenteriae (WA1), B. intermedia (PWS/AT),
B. murdochii (DSM12563) and four strains of B. pilosicoli
(95/1000; B2904; WesB; P43/6/78") [24,28-30].

PCR was performed on DNA from all the B. pilosicoli iso-
lates, using 0.2 ul Tag DNA polymerase, 5 pl of 10x PCR
buffers, 3 pl of 25 mM MgCl,, 5 pl of 8 mM dNTP, 5 pl of
the forward and reverse primers, 12 pl of cresol red solution
and 2 pl of template, with the reaction mix topped up
with PCR-grade water to a final 50 pl volume. Each PCR
reaction set included DNA from B. pilosicoli strain 95/1000
as a positive control and distilled water as a negative con-
trol. The PCR conditions were 95°C for 2 min, followed by
33 cycles at 95°C for 30 sec, 50°C for 15 sec, 72°C for
1 min for every 1 kbp of product, and a final extension
period of 5 min at 72°C before holding at 14°C.

The PCR products were subjected to electrophoresis
in a 1% agarose gel in a Bio-Rad Sub-Cell® GT Agarose
Gel electrophoresis unit at 120 V for 30 min. A 1 Kbp ladder
marker was added to the first and last well of each row to
allow estimates of the molecular masses of the samples.
The gel was stained by immersion in an ethidium bromide
solution at a concentration of 0.5 pug/ml for 30 mins, and
the DNA was visualized over a UV illuminator (Biorad
Chem Doc XRS Universal Hood).

For sequencing, the PCR products were purified with
the Wizard® SV Gel and PCR Clean-Up System Kit
(Promega) following the manufacturer’s instructions,
then PCR was performed on the purified products using
the BigDye Terminator v3.1 Cycle Sequencing Kit (Applied
Biosystems, Foster City, USA) in a 96 well plate, according
to the manufacturer’s instructions, using 10 pl of a single
primer instead of 5 pl of both forward and reverse primer
in each reaction. The amplified products were purified
using ethanol precipitation and the pellet was held at 4°C
before being sequenced with the ABI 373A sequencing sys-
tem (Applied Biosystems).

Analysis
The sequences were analyzed and assembled using the
Bioedit Sequence Alignment Editor [31]. The sequences
for each locus were aligned using the ClustalW program
(EMBL-EBI, European Bioinformatics Institute [http://
www.ebi.ac.uk/Tools/msa/clustalw2/]) and B. pilosicoli
strain 95/1000 sequence as the standard for the process.
Two methods were used to generate phylogenetic trees.
In the first the aligned sequences for each of the seven loci
were analyzed using the non-redundant databases (NRDB)
program (http://pubmlst.org/analysis/) to identify strain
sequences that were identical to each other. Each unique
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nucleotide sequence was then assigned with a different
allele number. The allelic profile for each isolate was
determined and consisted of a line listing the allele number
for each locus in turn. Isolates were assigned a sequence
type (ST) according to their allelic profiles. Isolates were
considered genetically identical and belonging to the same
ST if their sequences were identical at all seven loci.

The allelic profile was then entered into the dataset
of the START2 program and rooted phylogenetic trees
(“consensus trees”) with 1000 bootstrap replicates were
generated from the data matrix using the ‘Unweighted Pair
Group Method with Arithmetic Mean’ (UPGMA) and
‘Neighbour-Joining’ (NJ) method with the ‘Maximum like-
lihood’ (ML) models [32]. A minimum spanning tree also
was generated using the Bionumerics Software (version
7.1, Applied Maths), and colour coded according to the
species of origin and geographical origin of the isolates.

The allelic profile was used to calculate genetic diversity,
as previously described [33]. To help determine whether re-
combination had occurred within the B. pilosicoli popula-
tion, the START?2 program was used to estimate the degree
of linkage disequilibrium in the population by calculating
the index of association (I4) and the standardized index of
association (I°,) [34].

The second method of generating phylogenetic trees
was by concatenating the nucleotide sequences for the
seven genes of each isolates in the order adh, pgm, est,
glp, gdh, thi and alp (the same order previously used for
other Brachyspira species).

All sequences were placed in a single FASTA formatted
file and aligned with ClustalW before being converted
to the MEGA format (http://ccg.murdoch.edu.au/tools/
clustalw2mega/). UPGMA and NJ trees were constructed
from the aligned DNA sequences using the MEGA v4.0.2
program [35].

To verify the topology of the phylogenetic trees, the
Shimodaira-Hasegawa (SH) test was carried out using the
Phylip v3.69 program [36] to detect significant differences
amongst the trees extrapolated for each gene. This analysis
was carried out by estimating the maximum likelihood
(ML) trees for each of the seven genes, and then com-
paring, in turn, the difference in log likelihood (A - In L)
between each of the seven topologies on each of the seven
genes. Randomization tests were used to assess the extent
of congruence amongst the seven ML gene trees, and the
A - In L values for each of the seven ML trees fitted to each
of the seven genes were compared to the equivalent values
computed for 200 random trees created from each gene.

To test whether the genetic variation at different loci
were independent of one another, 35 ML trees were
constructed from concatenated sequences of sets of
three random loci for the 127 STs. It was expected that
if there were associations between the loci, there would
be little variation between the different trees.
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Additional files

Additional file 1: Table S1. The names of the 131 isolates, species from
which they were isolated, the country of isolation, the sequence type (ST)
to which they were assigned in the study and the allelic number
assigned to the seven loci. The shaded boxes represent nine sets of
isolates in different adjacent STs that differ at only one or two loci, and
were each defined as a cluster.

Additional file 2: Table S2. Results of the Shimodaira-Hasegawa test
for the seven loci.

Additional file 3: Table S3. Results of the Shimodaira-Hasegawa test
on the four concatenated trees that showed the greatest difference with
combinations of three loci.

Additional file 4: Figure S1. Neighbour joining tree using the
consensus sequences of the 131 B. pilosicoli isolates. A few localized

clusters of isolates can be seen, with the largest being ST68 — ST73.
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