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Abstract

Background: A gamma-glutamyl transpeptidase (GGT) is produced by up to 31% of strains of Campylobacter jejuni
isolates. C. jejuni GGT is close to Helicobacter pylori GGT suggesting a conserved activity but unlike the latter, C. jejuni
GGT has not been studied extensively. In line with the data available for H. pylori, our objectives were to purify C.
jejuni GGT from the bacteria, and to evaluate its inhibitory and proapoptotic activities on epithelial cells and human
lymphocytes.

Methods: C. jejuni GGT was purified from culture supernatants by chromatography. After verification of the purity
by using mass spectrometry of the purified enzyme, its action on two epithelial cell lines and human lymphocytes
was investigated. Cell culture as well as flow cytometry experiments were developed for these purposes.

Results: This study demonstrated that C. jejuni GGT is related to Helicobacter GGTs and inhibits the proliferation of
epithelial cells with no proapoptotic activity. C. jejuni GGT also inhibits lymphocyte proliferation by causing a cell
cycle arrest in the G0/G1 phase. These effects are abolished in the presence of a specific pharmacological inhibitor
of GGT.

Conclusion: C. jejuni GGT activity is comparable to that of other Epsilonproteobacteria GGTs and more generally to
Helicobacter bilis (inhibition of epithelial cell and lymphocyte proliferation, however with no proapoptotic activity). It
could therefore be considered as a pathogenicity factor and promote, via the inhibition of lymphocyte proliferation,
the persistence of the bacteria in the host. These observations are consistent with a role of this enzyme in the
pathophysiology of chronic infections associated with C. jejuni.
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Background
Campylobacter jejuni is the main Campylobacter species
isolated from humans. The C. jejuni reservoir consists es-
sentially of the digestive tract of birds, including poultry.
Transmission to humans occurs mainly indirectly via
food or contaminated water [1]. In humans, Campylo-
bacters induce enteritis generally with a favourable evo-
lution after a few days but with potential complications
like systemic infections or post-infectious diseases
(Guillain–Barré syndrome). C. jejuni may also be involved
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in immunoproliferative small intestinal disease (IPSID) [2]
which belongs to the group of digestive mucosa associated
lymphoid tissue (MALT) lymphomas.
In Helicobacter pylori, a bacterium close to C. jejuni,

the role of gamma-glutamyl transpeptidase (GGT) has
been extensively studied [3-5]. GGT is an enzyme belong-
ing to the family of N-terminal nucleophile hydrolases,
present in prokaryotes and eukaryotes, playing a major
role in the degradation of glutathione. GGTs of distant
species (mammals and bacteria) often exhibit a high pro-
tein sequence identity (>25%) [6,7].
H. pylori GGT has been the subject of numerous stu-

dies. It is present in 100% of the strains and is constitu-
tively expressed. It can reach the periplasmic space thanks
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to its signal peptide. It is synthesized as an inactive 60 kDa
precursor which undergoes autocatalytic cleavage result-
ing in an active heterodimer composed of two subunits of
20 and 40 kDa respectively. The small subunit plays a key
role in the autocatalytic and enzymatic activity of GGT; it
includes the active site of the enzyme [6,8]. This enzyme is
not essential to the bacteria, as ggt gene deletion does not
inhibit bacterial growth, but it provides an advantage in
gastric colonization [3]. H. pylori GGT also plays a role in
the inhibition of T-lymphocyte proliferation by blocking
the cell cycle in the G1 phase [5]. In addition, several stud-
ies have shown that H. pylori GGT has a proapoptotic ef-
fect on human gastric epithelial cells (AGS line) [9-11].
C. jejuni GGT has been studied less. It is present in up

to 31% of strains [12] and has 67 to 69% of amino-acid
identity with H. pylori GGT. The cleavage site, the essen-
tial residues for enzymatic activity, substrate recognition
and catalytic activity for H. pylori GGT are conserved in
C. jejuni GGT. It allows C. jejuni to metabolize glutamine
and glutathione as a source of amino acids and possibly to
persist in the intestine [13]. A Finnish study showed that
C. jejuni GGT could be a marker of severity of infection,
in particular for bloody diarrhea [14].
In this study, we used phylogenetic and functional ap-

proaches to analyze C. jejuni GGT. We showed that C.
jejuni GGT is related phylogenetically to Helicobacter
GGTs and, like H. pylori GGT, C. jejuni GGT inhibits
lymphocyte and epithelial cell proliferation. The inhi-
bition observed was mediated by an apoptosis-independent
mechanism, suggesting a conserved function among
GGTs in Epsilonproteobacteria.

Results
Phylogenetic analysis
The phylogenetic position of C. jejuni GGT among Epsi-
lonproteobacteria was analyzed (Additional file 1: Figure
S1). C. jejuni GGT was closer to H. bilis, Helicobacter
canis and Helicobacter trogontum GGTs than to H. pyl-
ori GGTs. C. jejuni GGTs appeared to be highly con-
served, including those of H. pylori.

C. jejuni GGT purification
C. jejuni GGT was purified from a bacterial supernatant.
Briefly, as described in Materials and Methods, proteins
from a supernatant were first precipitated with ammo-
nium sulfate. The supernatant was then dialyzed and
purified by two ion-exchange chromatographies. To de-
termine the effectiveness of the purification, the dialys-
ate, the product obtained after the first chromatography
and the final product were analyzed by migration on a
SDS-PAGE gel and Coomassie blue staining (Figure 1A).
Efficient purification was observed between the dialys-
ate, the product of the first chromatography and the
final product.
Two bands at approximately 40 and 20 kDa were ob-
served on the gel after the final purification, which is
consistent with the expected molecular weights of the
large and small subunit of C. jejuni GGT, respectively.
These bands were cut and analyzed by mass spectrom-
etry (after extraction and protein digestion). The results
showed the presence of C. jejuni GGT with a significant
number of peptides (Figure 1B): the amino-acids found
in the 40 kDa band represent 73.6% of the protein se-
quence of the large subunit of C. jejuni GGT and those
found in the 20 kDa band represent 68.8% of the protein
sequence of the small subunit.

C. jejuni GGT effects on epithelial cells
The gastric epithelial cell line AGS was cultured for 24 h
in media supplemented with 2.5 to 320 ng/mL of purified
GGT with or without acivicin to determine the optimal
concentration to evaluate GGT activity. At high concen-
trations epithelial cell proliferation was strongly inhibited
with or without GGT inactivation with acivicin suggesting
an artifactual phenomenon. This artifactual effect was lost
at lower concentrations (Figure 2A). At 10 ng/mL of
GGT, a significant reduction of AGS cell proliferation was
still observed whereas acivicin restored a normal prolifera-
tion rate. This concentration was finally chosen as the
lowest GGT concentration to be used. The activity of
GGT at 10 ng/mL was also verified on Caco-2 cell prolif-
eration (Figure 2B). Compared to AGS cells, GGT also
had a significant effect on intestinal cell proliferation.
Trypan blue staining and cell counts after a 24 h incuba-

tion with C. jejuni GGT was used to verify that this inhibi-
tory effect was not due to a cell death phenomenon,
rather to a cell proliferation arrest (data not shown).
The activity of C. jejuni GGT on apoptosis was then

studied by flow cytometry on AGS cells only. Compared
to the control, C. jejuni GGT induced a significant in-
crease in the percentage of apoptosis (Figure 3A).
However, C. jejuni GGT preincubation with acivicin
did not decrease the percentage of epithelial cells
undergoing apoptosis. In conclusion, the proapoptotic
activity observed in the presence of C. jejuni GGT did
not seem to be dependent on the presence of GGT
(Figure 3B) but on contaminant proteins even when
they were in very small amounts in the final product.

C. jejuni GGT effects on human lymphocytes
Lymphocyte proliferation was measured after 4 days of
culture in the presence of. C. jejuni GGT. A significant
inhibition of lymphocyte proliferation was observed. Pre-
incubation of C. jejuni GGT with acivicin or heat inacti-
vation of the enzyme, restored a level of lymphocyte
proliferation similar to that of the lymphocytes alone
(Figure 4). The inhibition of lymphocyte proliferation
could therefore be attributed to the GGT.
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No significant apoptosis was observed in the presence
of C. jejuni GGT. The lymphocyte cell cycle was how-
ever disturbed and, in particular, a cell cycle arrest in the
G0/G1 phase was found (Table 1) (Additional file 2:
Figure S2). No disturbance was observed when C. jejuni
GGT was inactivated with acivicin or heating.
In conclusion, C. jejuni GGT exhibited significant bio-

logical effects on human lymphocytes.

Discussion
Because of the conserved protein homology of C. jejuni
GGT with H. pylori GGT, the objectives of the present
study were to determine whether C. jejuni GGT had the
same properties as H. pylori GGT to inhibit 1) epithelial
cell proliferation via a pro-apoptotic mechanism and 2)
human lymphocyte proliferation. These data could be
strong arguments to better understand the pathogen-
icity of C. jejuni and to consider C. jejuni GGT as an im-
portant pathogenicity factor of this bacterium as well.
C. jejuni GGT was highly conserved among the C.

jejuni strains. As already shown by Skarp-de Haan CP
et al., [15] C. jejuni GGT was also very close to Helico-
bacter GGTs, in particular those from H. bilis, H. canis
Figure 1 C. jejuni GGT purification. (A) Analysis of the purification of C. j
M: size marker. (1) Supernatant after precipitation and dialysis, (2) After the
indicate the 40 and 20 kDa bands which correspond to the expected molecu
The black dotted boxes represent the gel bands which were cut and analyzed
and protein digestion, (1) amino-acids found in the 40 kDa band (in grey) cov
(2) amino-acids found in the 20 kDa band cover 68.8% of the protein sequen
and H. trogontum, which suggests a conserved activity
between these GGTs. C. jejuni GGT was purified di-
rectly from culture supernatants. This technical ap-
proach allowed the isolation of the protein directly
from the bacterium, avoiding any potential problems of
protein solubility or refolding as described in a previ-
ous publication [7].
In line with results concerning H. pylori, H. bilis, and

H. suis GGTs [7,10,16,17], an inhibition of epithelial cell
proliferation was observed for C. jejuni GGT. This bio-
logical activity seemed to be independent of the cell ori-
gin (gastric or intestinal). It has been suggested that H.
pylori and H. suis GGTs exert their inhibitory activity in-
directly via the formation of metabolites during trans-
peptidation [5,16]. This point should be investigated
further for C. jejuni GGT. Contrary to what has been de-
scribed for H. pylori and H. suis GGTs [9-11,16], this in-
hibitory effect does not depend on a proapoptotic
activity of C. jejuni GGT. H. pylori and H. suis GGTs are
indeed responsible for the apoptosis of human gastric
epithelial cells (AGS cell line), via the activation of cas-
pases 3 and 9, Bax, a decreased expression of anti-
apoptotic proteins Bcl-2 and Bcl-xl, and the release of
ejuni GGT by migration on SDS-PAGE gel and Coomassie blue staining.
first ion exchange chromatography, (3) Final elution. The black arrows
lar weights of the large and small subunits of C. jejuni GGT, respectively.
by mass spectrometry. (B) Mass spectrometry results. After extraction
er 73.6% of the protein sequence of the large subunit of C. jejuni GGT;
ce of the small subunit.



Figure 2 Inhibitory effect on epithelial cells proliferation by C. jejuni GGT. (A) AGS cells were cultured for 24 h with C. jejuni purified GGT
at different concentrations (from 320 to 2.5 ng/mL) preincubated or not with acivicin (10 μM). (B) Caco-2 cells in parallel with AGS cells were
cultured for 24 h with C. jejuni purified GGT at 10 ng/mL, preincubated or not with acivicin (10 μM). For each experiment, the percentage of
growth proliferation is calculated relative to the proliferation of cells in their standard culture medium whithout GGT. The data are consistent with
the results obtained during one experiment performed in triplicate, representative of the results for three independent manipulations.
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cytochrome c [10,11] or via the increase in H2O2 con-
centration due to glutathione catabolism by GGT
[16,18]. A necrotic phenomenon was also described for
H. suis GGT. In the study of Shibayama et al. fetal calf
serum (FCS) deprivation in the culture medium was car-
ried out before the apoptosis study [9]. Therefore if the
proapoptotic activity is detectable only under stress con-
ditions, it may simply be a technical artifact. Finally, our
results are similar to those of Rossi et al. with H. bilis
[7], which interestingly is one of most closely related
phylogenetically to C. jejuni GGT [15].
The role of C. jejuni GGT in the inhibition of lympho-

cyte proliferation with cell cycle arrest in the G0/G1
phase was also demonstrated in our study. This property
is shared by H. pylori, H. bilis and H. suis GGTs
[4,5,7,19,20]. As for H. pylori GGT, the inhibition of
lymphocyte proliferation is not dependent on an apop-
totic phenomenon. Schmees et al. showed that H. pylori
GGT acts on the cell cycle via a decrease in cellular
levels of Ras-dependent track mediators [5]. The cell
cycle arrest in the G1 phase by H. pylori GGT is charac-
terized by an increase in p27 and CDK inhibitor levels
and a decrease in cyclins. As for its activity on epithelial
cells, GGT appears to have an indirect action via the me-
tabolites formed during transpeptidation [20]. These
mechanisms have to be validated for C. jejuni GGT.

Conclusions
C. jejuni GGT promotes the persistence of intestinal
colonization in animals [21] and in our study it inhib-
ited the proliferation of human epithelial cells and lym-
phocytes. These inhibitory activities are shared by H.
pylori GGT [4,5,19]. C. jejuni GGT could therefore be
considered as a pathogenicity factor for this bacterium,
fostering the persistence of the infection in humans via
the inhibition of lymphocyte proliferation.

Methods
Bacterial strains, cell lines, culture conditions
Eleven C. jejuni strains named 2003–198, 2002–200,
2004–304, 2003–383, 2004–438, 2002–608, 2002–646,
2007–741, 2003–795, 2003–1129, and 2003–1206 were
obtained from the National Reference Center on Cam-
pylobacters and Helicobacters (CNRCH) strain collection



Figure 3 Activity of C. jejuni GGT on AGS cells apoptosis. (A) 1 - Selection of the population of interest (P1) depending on the size (FSC-A)
and cell density (SSC-A). The population was chosen as large as possible in order to properly select the apoptotic cells that may have varied
cytological features. Fluorescence emitted at cyanine 5 wavelength (PE-Cy-5) was analyzed based on the number of events in the selected
population: diploid cells are separated from hypodiploid cells (apoptotic cells). The proportion of epithelial cells in apoptosis was determined by
the ratio between hypodiploid cells and the number of events in the P1 population. Typical cytometry results are shown for 2- control AGS cells,
3- AGS cells with C. jejuni GGT (10 ng/mL) and 4- AGS cells with C. jejuni GGT (10 ng/mL) preincubated with acivicin (10 μM). (B) AGS cells were
cultured for 24 h with C. jejuni GGT (10 ng/mL) and preincubated or not with acivicin (10 μM). A significant difference was observed between
control cells and the cells with C. jejuni GGT. However, preincubation for 2 h at 37°C with acivicin or heat inactivation (70°C, 20 min) of C. jejuni
GGT had no effect. Staurosporine (10 μM) was used as the positive control. These data presented in A and B, are consistent with the results
obtained during the same manipulation carried out in triplicate, representative of the results for three independent manipulations. (**indicates a
significant difference, p <0.05 versus cells in PBS alone; ns for a non-significant difference, p > 0.05).
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(Univ. Bordeaux, Bordeaux, France). They were received
between 2002 and 2007. All of these strains were isolated
from humans, essentially from faecal samples, and they
were all identified at the species level by MALDI-TOF
mass spectrometry [22]. They belong to Lior biotype III
(hippurate +, H2S + and DNase -), in which the prevalence
of GGT is more important (60% according to personal
data) than in the other biotypes (15-20%). They were
used to assess the diversity of GGT genetics in C.
jejuni. C. jejuni strain 81116 (a kind gift from Dr D.
Newell) was used to purify GGT and to study C. jejuni
GGT activity on epithelial cells and lymphocytes. It
was selected for its GGT activity, as previously de-
scribed by Barnes et al. [21].
All strains were grown on horse blood agar (bioMérieux,

Marcy l’Etoile, France) in a microaerobic atmosphere at



Figure 4 Inhibitory effect on lymphocyte proliferation of C. jejuni GGT. Lymphocytes were cultured with C. jejuni purified GGT (10 ng/mL).
The ability of lymphocyte proliferation was verified by the action of phytohemagglutinin (PHA, 1 mg/mL) associated with interleukin-2 (IL-2, 20 U/mL).
Proliferation was measured after 4 days of culture by BrdU incorporation. Preincubation with acivicin (10 μM) or the prior inactivation by heat (20 min,
70°C) of C. jejuni GGT restored lymphocyte proliferation. These data are consistent with the results obtained during a manipulation performed
in triplicate and representative of the results for three independent manipulations. (**indicates a significant difference, p <0.05, compared to
lymphocytes alone (Ly)).
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37°C. A microscopic control was systematically performed
to check the morphology and mobility and standard bac-
teriological tests (Gram staining, catalase, oxidase) were
carried out as well.
The human intestinal epithelial cell lines AGS (stom-

ach cell line) and Caco-2 (colon cell line) were used. The
AGS cells in RPMI medium (Invitrogen) supplemented
with 10% FCS (Invitrogen) and 50 μg/mL of vancomycin
(Sandoz, Levallois Perret, France) and the Caco-2 cells
were grown in Modified Eagle’s Medium (MEM) (Invi-
trogen, Fisher Scientific SAS, Illkirch Cedex, France)
supplemented with 1% Minimum Essential Amino Acids
(MEAA) (Invitrogen).
Lymphocytes were purified from peripheral blood

from hemochromatosis patients by Ficoll gradient with
therapeutic phlebotomy performed regularly at the EFS
(French Blood Establishment, Aquitaine-Limousin) (No.
EFS CPS 10.41 Convention). Blood was collected in bags
(MSE 6500 L) (Macopharma, Tourcoing, France) in the
presence of an anticoagulant (sodium citrate).
Table 1 Distribution of cell cycle phases in lymphocytes cultu

G0

Ly 99.0 +

Ly + PHA/IL-2 69.9 +

Ly + PHA/IL-2 + acivicin 71.3 +

Ly + PHA/IL-2+ C. jejuni GGT 97.5 +

Ly + PHA/IL-2+ C. jejuni GGT + acivicin 68.6 +

Ly + PHA/IL-2+ heat inactivated C. jejuni GGT 71.5 +

Flow cytometry study by Nicoletti assay after 4 days of culture with C. jejuni GGT (1
growth conditions. These data are consistent with the results obtained during a ma
independent manipulations. (Ly: lymphocytes, PHA: phyto hemagglutinin, IL-2: inter
Phylogenetic analysis
The ggt genes of C. jejuni strains 2003–198, 2002–200,
2004–304, 2003–383, 2004–438, 2002–608, 2002–646,
2007–741, 2003–795, 2003–1129, and 2003–1206 were
amplified and sequenced using external and internal
gene-specific primers (Table 2). The sequences obtained
were translated into protein sequences using the EM-
BOSS software Transeq (http://www.ebi.ac.uk/Tools/st/
emboss_transeq/). GGT sequences of 5 C. jejuni strains
for which the genome is completely sequenced, were se-
lected: C. jejuni strains 81116 [23], 81176 [24], M1 [25],
ICDCCJ07001 [26] and C. jejuni subsp. doylei strain
269.97 (RefSeq NC_009707.1). GGTs of 8 published H.
pylori strains were also selected: strains 26695 [27], J99
[28], HPAG1 [29], 908 [30], P12 [31], Shi470 [32], B38
[33] and B45 [34], as well as GGTs of H. canis, H. bilis,
H. trogontum, H. felis [35], H. salomonis, H. suis [36], H.
bizzozeronii [37], H. cetorum, H. acinonychis [38] and H.
mustelae [39] strains. GGT sequences of 2 Arcobacter
species (related to Campylobacter species) were added
red with C. jejuni GGT

Cell cycle phase

/1 S G2/M

/- 0.2 0.6 +/- 0.2 0.2 +/- 0.1

/- 0.8 18.0 +/- 0.7 11.1 +/- 1.3

/- 2.0 18.0 +/- 0.7 8.0 +/- 2.1

/- 0.6 1.2 +/- 0.5 1.0 +/- 0.1

/- 1.9 17.7 +/- 0.9 12.3 +/- 0.7

/- 1.0 16.8 +/- 2.0 9.6 +/- 0.8

0 ng/mL). Percentage of cells in G0/G1, S and G2/M phase depending on
nipulation performed in triplicate representative of the results for two
leukin 2).

http://www.ebi.ac.uk/Tools/st/emboss_transeq/
http://www.ebi.ac.uk/Tools/st/emboss_transeq/


Table 2 Oligonucleotides used in this study

Oligonucleotides (size) Sequence (5′-3′)

F-GGT (23 bp) GGGTAAATAAGAAGTTAGAATTC

R-GGT (21 bp) CTTGATAAAGGCGGAAATGCC

F1GGT (20 bp) TGCTTTGGCTGTAGTGCATC

R1GGT (20 bp) TGCTTACAGCATTGCCTTTG

F2GGT (20 bp) TAGGCTTTTTGCGGTGGTAG

R2GGT (20 bp) CAGGAGATCCTGTGCCTGTG

F3GGT (21 bp) TTATCGCAAAGGAAGGTCCTG

R3GGT (20 bp) AGCATCAGGACCTTCCTTTG

bp: base pairs.
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to our selection. Phylogenetic analysis of GGT amino-acid
sequences was conducted in MEGA4 software using the
Minimum Evolution (ME) method after alignment in the
ClustalW2 software (http://www.ebi.ac.uk/Tools/msa/clus-
talw2/) and 1,000 repetitions of this analysis [40].
Nucleotide and protein sequences for the 11 C. jejuni

GGTs sequenced in the present study are available in
Genebank (EMBL) under the following accession numbers:
KF985027, KF991209, KF991210, KF991211, KF991212,
KF991213, KF991214, KF991215, KF991216, KF991217,
KF991218 for the strains 2002–200, 2002–608, 2002–646,
2003–198, 2003–383, 2003–1129, 2003–1206, 2004–304,
2004–438, 2007–741, and 2003–795 respectively.
Enzyme assay for GGT activity
GGT enzymatic activity was determined by the spectro-
photometric method described by Meister et al. [41].
The assay solution contained 20 mM of glycylglycine
(Sigma Aldrich, Saint-Quentin Fallavier, France), 300 mM
of L-γ-glutamyl-p-nitroanilide (Sigma Aldrich) and
60 mM of TRIS pH 8. The reaction mixture (5 μl of
GGT in 200 μL of assay solution) was incubated at 37°C
and analyzed by spectrophotometry at 405 nm to evaluate
the release of p-nitroanilide (yellow compound). The ac-
tivity of acivicin (Santa Cruz Biotechnology, Heidelberg,
Germany), a pharmacological inhibitor of GGT, was also
tested (10 μM) after a 2 h preincubation at 37°C as well as
GGT heat inactivation at 70°C for 20 min
C. jejuni GGT purification
A bacterial supernatant of C. jejuni 81116 was prepared
by incubating the strain in 1 L of PBS overnight at 37°C
with orbital shaking (150 rpm). After centrifugation at
10,000 rpm for 10 min, the supernatant was recovered.
Solid ammonium sulfate (Sigma Aldrich) was added to
the cell extract to 90% saturation, and the mixture was
stirred at 4°C for 2 h. The precipitate was removed by
centrifugation at 12,000 rpm for 30 min at 4°C and dis-
solved in 6 mL of dialysis buffer (TRIS 50 mM, NaCl
25 mM, pH 8). This solution was dialyzed twice against
1 L of the same buffer for 2 h and overnight at 4°C. The
GGT activity was tested on 5 μL of the dialyzed solution
according to the method of Meister et al. described
above [41].
One mL of the dialyzed solution was applied to a

MonoQ®HiTrap column (GE Healthcare, Aulnay sous
Bois, France) equilibrated with 50 mM TRIS pH 8 (Buf-
fer A). Elution was performed at a flow rate of 1 mL/
min with a gradient of NaCl stepwise (0.08; 0.25; 0.35
and 1 M) in buffer A. 330 μl fractions were collected
and tested for GGT activity as previously described. The
active fractions were combined and SDS-PAGE was per-
formed with 12% polyacrylamide running gel and 5%
polyacrylamide stacking gel. After electrophoresis, the
gel was stained with Coomassie blue.
The active fraction was then purified by a second ion

exchange chromatography (MonoQ®HiTrap column,
1 mL, GE Healthcare). Elution was performed at a flow
rate of 1 mL/min with a linear gradient of NaCl (0.08 to
0.5 M). The active fraction was not retained by the col-
umn and was eluted directly. SDS-PAGE and Coomassie
blue staining were performed. The active fraction was pre-
cipitated with ammonium sulfate (90% saturation) at 4°C
for 2 h. The precipitate was removed by centrifugation
at 12,000 rpm for 30 min at 4°C and dissolved in
400 μL of dialysis buffer. This solution was dialyzed
twice for 2 h each time against 500 mL of the same
buffer at 4°C. SDS-PAGE and Coomassie blue staining
were performed. The bands of interest were cut and
analyzed by mass spectrometry at the Functional Gen-
omics Platform of the University of Bordeaux. The pro-
tein concentration was determined spectrometrically
using the Bradford method with bovine serum albumin
(BSA) as a standard (Biorad, Marnes La Coquette,
France). The GGT activity was again evaluated as de-
scribed above.

Mass spectrometry
Sample preparation: Each SDS-PAGE band was cut into
1 mm × 1 mm gel pieces. Gel pieces were destained in
25 mM ammonium bicarbonate, 50% acetonitrile (ACN)
and shrunk in ACN for 10 min. After ACN removal, gel
pieces were dried at room temperature. Proteins were
first reduced in 10 mM dithiothreitol, 100 mM ammo-
nium bicarbonate for 30 min at 56°C then alkylated in
100 mM iodoacetamide, 100 mM ammonium bicarbon-
ate for 30 min at room temperature and shrunk in ACN
for 10 min. After ACN removal, gel pieces were rehy-
drated with 100 mM ammonium bicarbonate for 10 min
at room temperature. Before protein digestion, gel pieces
were shrunk in ACN for 10 min and dried at room
temperature. Proteins were digested by incubating each
gel slice with 10 ng/μl of trypsin (T6567, Sigma-Aldrich)

http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
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in 40 mM NH4HCO3, 10% ACN, rehydrated at 4°C for
10 min, and finally incubated overnight at 37°C. The
resulting peptides were extracted from the gel in three
steps: an initial incubation in 40 mM ammonium bicar-
bonate, 10% ACN for 15 min at room temperature and
two incubations in 47.5% ACN, 5% formic acid for
15 min at room temperature. The three collected extrac-
tions were pooled with the initial digestion supernatant,
dried in a SpeedVac, and resuspended in 25 μL of 0.1%
formic acid before nanoLC-MS/MS analysis.
NanoLC-MS/MS analysis: Online nanoLC-MS/MS

analyses were performed using an Ultimate 3000 system
(Dionex, Amsterdam, The Netherlands) coupled to a
nanospray LTQ Orbitrap XL mass spectrometer (Thermo
Fisher Scientific, Bremen, Germany). Ten μL of each pep-
tide extract were loaded on a 300 μm ID ×mm PepMap
C18 precolumn (LC Packings, Dionex, Sunnyvale, CA,
USA) at a flow rate of 30 μL/min. After 5 min of desalting,
peptides were separated on a 75 μm ID × 15 cm C18Pep-
Map™ column (LC packings) with a 5-40% linear gradient
of solvent B for 108 min (solvent A was 0.1 formic acid in
5% ACN and solvent B was 0.1% formic acid in 80%
ACN). The separation flow rate was set at 200 nL/min.
The mass spectrometer operated in a positive ion mode at
a 1.8-kV needle voltage and a 27-V capillary voltage. Data
were acquired in a data-dependent mode alternating an
FTMS scan survey over the range m/z 300–1700 with
the resolution set to a value of 60,000 at m/z 400 and 6
ion trap MS/MS scans with Collision Induced Dissoci-
ation (CID) as the activation mode. MS/MS spectra
were acquired using a 3-m/z unit ion isolation window
and normalized collision energy of 35. Mono-charged
ions and unassigned charge-state ions were rejected
from fragmentation. Dynamic exclusion duration was
set to 30 sec.
Database search and results processing: Mascot and

Sequest algorithms through Proteome Discoverer 1.4
Software (Thermo Fisher Scientific) were used for pro-
tein identification in batch mode by searching against
a C. jejuni UniProt database (44,546 entries). Two
missed enzyme cleavages were allowed. Mass to-
lerances in MS and MS/MS were set to 10 ppm and
0.8 Da. Oxidation of methionine and carbamidome-
thylation on cysteine were searched as variable modi-
fications. Peptide validation was performed using
Percolator algorithm [42] and only “high confidence”
peptides were retained corresponding to a 1% false
positive rate at peptide level.

C. jejuni GGT activity on epithelial cells
Cell proliferation: Epithelial cells were cultured in 96-
well plates for 48 h. The effect of purified GGT on these
lines was evaluated at different concentrations (2.5 to
320 ng/mL) after 24 h of treatment with the MTT
Formazan kit (Sigma-Aldrich). GGTs, either preincu-
bated for 2 h in the presence of acivicin or previously
heat-inactivated (70°C, 20 min), were also tested.
Cell apoptosis: AGS cells were cultured in 24-well

plates for 48 h. The pro-apoptotic effect of GGT
(10 ng/mL) with and without acivicin after 24 h of
treatment was evaluated using the Nicoletti method
[43]. Staurosporine (10 μM) (Sigma-Aldrich), a pro-
apoptotic compound, was used as a positive control.
Briefly, adherent cells were trypsinized, washed and
centrifuged for 5 min at 3,000 rpm. The cell pellet was
resuspended in 100 μL of Nicoletti buffer (0.1% sodium
citrate, 0.1% Triton X-100, 50 mg/L of propidium
iodide in distilled water). The FACS CantoII cytometer
(BD Biosciences, Le Pont de Claix, France) was used
for data acquisition.
C. jejuni GGT activity on lymphocytes
Lymphocytes were cultured in 24-well plates (1.106

cells/well) for 4 days at 37°C in a 5% CO2 atmosphere
in RPMI supplemented with 10% FCS and 50 μg/mL
of vancomycin in the presence of purified GGT (10
ng/mL) with or without acivicin (10 μM), and heat-
inactivated (70°C, 20 min) or not. The proliferative
capacity of lymphocytes was monitored using phyto-
hemagglutinin (PHA, 1 μg/mL) (Sigma Aldrich) and
interleukin 2 (IL 2, 1000 U/mL) (Chiron, Surennes,
France) [19]. Lymphocyte proliferation was measured
by BrdU incorporation (5 bromo 2′ deoxyuridine) (BD
Biosciences) with flow cytometry (FACS CantoII) using
a method previously validated in the laboratory [19].
This incorporation was revealed using an anti-BrdU
antibody coupled to the fluorochrome fluorescein iso-
thiocyanate (FITC) (BD Biosciences). Stimulation of
this fluorochrome by the laser cytometer allowed an
analysis of the cells based on their size and density and
a record of the proportion of those that have been spe-
cifically recognized by the anti-BrdU antibody. The re-
sults were analyzed using CellQuest (BD Biosciences)
software and were used to determine the percentage of
proliferated cells.
During the same experiment, the percentage of cells

undergoing apoptosis and the cell cycle were both evalu-
ated by the Nicolleti method. Lymphocytes were centri-
fuged for 10 min at 1,500 rpm and resuspended in
100 μl of Nicoletti buffer.
Statistical analysis
Statistical analyses were performed using the Mann–
Whitney test (SPSS Version 16 software). This is a
nonparametric test which is used to test the equality of
distribution of two independent sets of values to be
compared (p <0.05).
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Additional files

Additional file 1: Figure S1. Tree based on amino-acid sequences of
different bacterial GGTs. The evolutionary history was inferred using the
method of “Minimum Evolution” and the evolutionary distances were
calculated using the matrix method of Dayhoff. The scale indicates the
amino-acid substitutions. The numbers next to the branches indicate
the robustness of the separation of the branches in the tree obtained
(>70%, analysis repeated 1,000 times).

Additional file 2: Figure S2. Example of cell cycle evaluation by flow
cytometry (Nicoletti assay). (1) Selection of the population of interest (P2)
by freeing aggregated cells that give false cells in the G2/M phase and
taking into consideration the width of the emission wavelength of
phycoerythrin (PE-W) according to the peak area (PE-A). From P2, Graphs
(2) control lymphocytes, (3) Lymphocytes with C. jejuni GGT (10 ng/mL)
and (4) lymphocytes with C. jejuni GGT (10 ng/mL) preincubated with
acivicin (10 μM) allow a distinction between G0/1 (P3), S (P4) and G2/M
(P5) lymphocytes.
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GGT: Gamma-glutamyl transpeptidase; PI: Propidium iodure;
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