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Abstract 

Background: Human norovirus (HuNoV) is the major cause of viral acute gastroenteritis for all age groups in vari‑
ous countries. HuNoV GII in particular accounted for the majority of norovirus outbreaks, among which GII.4 caused 
repeated outbreaks for a long time. Besides GII.4, other norovirus genotypes, GII.2, GII.6, and GII.17, have also been 
prevalent in various contexts in recent years, but few detailed epidemiological studies of them have been performed 
and are poorly understood. We thus conducted an epidemiological analysis of HuNoV GII in Ibaraki Prefecture, Japan, 
by performing surveillance in the six seasons from September 2012 to August 2018.

Results: HuNoV GI occurred almost sporadically for all genotypes; however, each genotype of GII exhibited its typical 
epidemiological characteristics. Although the number of outbreaks of GII.4 decreased season by season, it reemerged 
in 2017/2018 season. The timing of the epidemic peak in terms of number of cases for GII.17 differed from that for 
the other genotypes. The patients age with GII.2 and GII.6 were younger and outbreak of GII.17 occurred frequently 
as food poisoning. Namely, the primarily infected outbreak group differed for each genotype of HuNoV GII. Moreover, 
the viral load of patients differed according to the genotype.

Conclusions: Various HuNoV genotypes including GII.2, GII.4, GII.6, and GII.17 were shown to be associated with 
various types of outbreak sites (at childcare and educational facilities, involving cases of food poisoning, and at elderly 
nursing homes) in this study. These genotypes emerged in recent years, and their prevalence patterns differed from 
each other. Moreover, differences in outbreak sites and viral load of patients among the genotypes were identified.
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Background
Human norovirus (HuNoV) belongs to the family Cali-
civiridae, genus Norovirus. It is a leading causative agent 
of acute gastroenteritis in people of all ages [1]. Many 
reports have suggested that the HuNoV genome can 
evolve rapidly, resulting in many different genotypes 
[2, 3]. At present, HuNoV is further classified into two 
genogroups (genogroups I and II) and over 30 genotypes 
(GI.1–GI.9 and GII.1–GII.22), as revealed by detailed 
genetic analyses of the capsid gene [4].

Previous molecular epidemiological studies showed 
that some genotypes of HuNoV, including GII.2, GII.4, 
GII.6, and GII.17, were particularly prevalent in gastro-
enteritis cases worldwide during the last 10 years [5–7]. 
Among these, GII.4 variant strains suddenly emerged 
and caused pandemics of gastroenteritis in many regions 
including Japan during 2006–2014 [4, 8]. This geno-
type has been associated with not only gastroenteritis 
in infants but also food poisoning in adults in various 
countries [9], while the prevalence of the virus may have 
declined during the last three seasons [10–12]. Another 
new genotype, GII.P17–GII.17, also suddenly emerged 
and caused large outbreaks in some countries [13], 
including large food poisoning-related outbreaks in Japan 
[14]. Furthermore, GII.2 variant strains reemerged in 
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the 2016/2017 season and caused pandemics in various 
countries including Germany, China, and Japan [15–17]. 
However, there is still no comprehensive understanding 
of the local molecular epidemiology of HuNoV in Japan.

Therefore, we studied the relationships between the 
prevalent NoV genotypes associated with gastroenteritis 
outbreaks and epidemiologic data in Ibaraki Prefecture, 
Japan, during the 2012–2018 seasons to better under-
standing the molecular epidemiology in a domestic area.

Results
Relationships among HuNoV genotype, season, patient 
age, and outbreak site of infection
A total of 4588 clinical fecal specimens collected from 
September 2012 to August 2018 were examined to detect 
HuNoV (Table 1). Among these, HuNoV GI was detected 
in 244 specimens (around 5% of all specimens) and 
HuNoV GII in 2437 (around 53%). Detailed data on the 
seasonal variations, detected genotypes, and the outbreak 
site are shown in Tables  2 and 3 and Fig.  1. First, dur-
ing the 2012–2015 seasons, GII.4 was detected in many 
cases in all patient sites, including outbreaks at childcare 
(0–6  years old), educational facilities (6–15  years old), 
and elderly nursing homes, and cases involving food 
poisoning. The GII.2 was the main genotype detected 
in outbreaks at childcare and educational facilities in 
the 2016/2017 season. GII.6 was mainly detected in the 
2013/2014 season in outbreaks at childcare and educa-
tional facilities. GII.17 was suddenly detected in out-
breaks involving food poisoning from the 2014/2015 
season. GII.4 reemerged and caused outbreaks at child-
care and educational facilities during the 2017/2018 sea-
son. In addition, GII.2, GII.4, and GII.6 were detected 
during September–March, whereas GII.17 was detected 
during January–April (Fig.  1). Finally, the GI virus was 

mainly detected in the 2014/2015 season from outbreaks 
at childcare and educational facilities and from cases 
involving food poisoning (Table 2). Moreover, unlike GII 
virus, GI virus was sporadically detected throughout the 
seasons (Fig. 1). These results suggest that various types 
of HuNoV were associated with the outbreaks of gastro-
enteritis in Ibaraki Prefecture.   

Relationships among age, viral load, and HuNoV genotype 
in the fecal specimens
In the present study, we analyzed the relationships 
among age, viral load, and HuNoV genotype in the fecal 
specimens. The ages of the patients were significantly 
lower in whom GII.2 and GII.6 were detected than in 
whom GI, GII.4, and GII.17 were detected. Moreover, the 
age of patients in whom GII.6 was detected was signifi-
cantly lower than for GII.2 (Table  4). We also analyzed 
the viral loads for some genotypes, including GI, GII.2, 
GII.4, GII.6, and GII.17, using real-time (RT)-PCR in 
the fecal specimens (Table 5). The HuNoV genome copy 
numbers of GII.2 were significantly higher than that of 
GI, GII.4, GII.6, and GII.17. These results suggested that 
the patients with GII.2 excreted more viruses than those 
infected with viruses of other genotypes.

Phylogeny of the detected HuNoV viruses
We performed a phylogenetic analysis based on the VP1 
gene sequences of GI and genotypes of GII; GII.2, GII.4, 
GII.6, and GII.17 using the maximum likelihood (ML) 
method (Fig.  2a–e). First, 7 genotypes of GI virus such 
as GI.2, 3, 4, 5, 6, 7, and 9 were detected in this study 
(Fig.  2a). The tree of the genotype GII.2 formed three 
major clusters (Fig. 2b). GII.2 strains belonging to Clus-
ters 1 and 2 were the main ones detected during the last 
two seasons. In the present tree, GII.2 virus detected in 

Table 1 Detected viruses in this study

RVA rotavirus group A, SaV sapovirus, AdV adenovirus, AstV astrovirus

Season 2012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018 Total Rate (%)

Samples 560 876 842 694 908 708 4,588

NoV GI 36 40 129 18 3 18 244 5.3

NoV GII 268 471 347 332 631 388 2,437 53.1

 GII.2 35 7 1 35 493 112 683 14.9

 GII.4 186 262 187 108 53 234 1,030 22.4

 GII.6 15 161 4 7 13 200 4.4

 GII.17 1 19 96 108 34 21 279 6.1

 Other GII 31 22 59 74 38 21 242 5.3

RVA 28 36 5 50 7 7 133 2.9

SaV 20 13 37 51 16 62 199 4.3

AdV 1 12 7 8 9 16 53 1.2

AstV 5 1 3 9 0.2
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the 2016/17 season were classified into the Clusters 1 and 
2, whereas the GII.2 virus mainly detected in the 2017/18 
season were classified into Cluster 2. The GII.4 strains 
formed many clusters, although almost all of them were 
classified into the Sydney 2012 type (Fig.  2c). Among 
them, the GII.4 virus detected during the 2012–2015 
seasons were genetically identical with a GII.4 proto-
type strain (accession no. JX459908), whereas the virus 
detected in some cases during 2015–2018 seasons were 
genetically identical with another prototype GII.4 (acces-
sion no. LC160215). GII.6 strains formed three clear clus-
ters. Among these, the strains detected in the 2013/2014 
season belonged to Cluster 1, whereas the strains 
detected in the 2012/2013 season mainly belonged to 
Cluster 2 (Fig. 2d). Most GII.17 strains belonged to Clus-
ter 1 (Kawasaki308 type), whereas some strains belonged 

to Cluster 2 (Kawasaki323 type) (Fig. 2e). In the present 
cases, we detected genotype GII.17 in some cases during 
the 2014–2018 seasons, and these strains were geneti-
cally identical with a prototype of GII.17 virus (Kawasaki 
308 strain). These results suggest that various genotypes 
of GII viruses have been associated with a range of out-
breaks in Ibaraki Prefecture.

Pairwise distance of the strains
To analyze the genetic divergence of the present strains, 
we calculated the pairwise distances of the GI, GII.2, 
GII.4, GII.6, and GII.17 strains (Fig.  3a–e). First, the 
pairwise distance value among the GI strains was 
0.18 ± 0.07 (mean ± standard deviation [SD]), and the 
intra-genotypic pairwise distance value was 0.067 ± 0.061 
(mean ± SD). The intra-genotypic pairwise distance value 

Table 2 Detected genotypes of GI in each situation

C childcare and educational facility, F food poisoning, E elderly nursing home, O others

Season 2012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018 Total

GI 13 11 29 7 3 4 67

 C 6 4 13 4 2 29

 F 7 7 13 3 3 2 35

 E 1 1

 O 2 2

GI.2 1 3 10 4 0 0 18

 C 1 2 4 2 9

 F 1 5 2 8

 E

 O 1 1

GI.3 4 2 17 2 0 2 27

 C 8 2 1 11

 F 4 2 7 1 14

 E 1 1

 O 1 1

GI.4 0 3 1 0 0 1 5

 C 1 1

 F 3 1 4

 E

 O

GI.6 7 2 0 1 0 0 10

 C 5 1 6

 F 2 1 1 4

 E

 O

Other GI 1 1 1 0 3 1 7

 C 1 1 2

 F 1 3 1 5

 E

 O
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of the present GII.2 was 0.020 ± 0.012 (mean ± SD), 
whereas that of the GII.4, GII6, and GII.17 values were 
0.021 ± 0.010 (mean ± SD), 0.046 ± 0.036 (mean ± SD), 
and 0.017 ± 0.015 (mean ± SD), respectively. Over-
all, these genetic distances were relatively short within 
the same cluster. Thus, the results suggest that the 
strains analyzed here had not undergone wide genetic 
divergence.

Discussion
In this study, we performed a molecular epidemiological 
study of HuNoV infection in Ibaraki Prefecture, Japan, 
during the 2012–2018 seasons. The main findings were 
as follows: (i) various HuNoV genotypes including GII.2, 
GII.4, GII.6, and GII.17 were associated with the out-
breaks of gastroenteritis in Ibaraki Prefecture; (ii) the 

GII.2-infected subjects showed a higher viral load in 
fecal specimens than those infected with viruses of other 
genotypes; and (iii) the detected strains had relatively low 
genetic divergence.

It has been reported that, although other GII genotypes 
were previously prevalent, GII.4 Den Haag 2006b sud-
denly emerged and caused pandemics in the 2006/2007 
season [18, 19]. Moreover, variants (Den Haag 2006b 
type, New Orleans 2009 type, and Sydney 2012 type) of 
the GII.4 caused many outbreaks up to the 2013/2014 
season [8]. However, after the 2014/2015 season, not 
only was GII.4 prevalent but also other genotypes, such 
as GII.2 and GII.17, were associated with outbreaks [13, 
20]. A possible reason for the alterations of the prevalent 
GII genotypes; is that acquired herd immunities due to 
large outbreaks may affect human population [6, 21, 22]. 
Overall, the identified trends regarding the prevalent 

Table 3 Detected genotypes of GII in each situation

C childcare and educational facility, F food poisoning, E elderly nursing home, O others

Season 2012/2013 2013/2014 2014/2015 2015/2016 2016/2017 2017/2018 Total

GII 85 122 92 83 189 89 660

 C 46 67 25 36 135 52 361

 F 9 25 48 31 40 22 175

 E 20 20 11 12 4 8 75

 O 10 10 8 4 10 7 49

GII.2 9 1 1 7 152 27 197

 C 8 1 7 117 15 148

 F 1 1 28 10 40

 E 1 1

 O 7 1 8

GII.4 67 66 43 31 15 52 274

 C 31 21 10 9 7 33 111

 F 7 17 18 12 4 8 66

 E 20 20 9 8 3 7 67

 O 9 8 6 2 1 4 30

GII.6 4 49 3 2 4 0 62

 C 3 41 1 2 4 51

 F 6 2 8

 E

 O 1 2 3

GII.17 1 1 29 33 11 7 82

 C 9 8 1 2 20

 F 1 1 17 19 7 3 48

 E 2 4 1 7

 O 1 2 2 2 7

Other GII 4 5 16 10 7 3 45

 C 4 4 5 10 6 2 31

 F 1 10 1 1 13

 E

 O 1 1
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Fig. 1 Relationship between the occurrence of outbreaks for each genotype of NoV and the site of infection. The number of outbreaks of a GI, b 
GII.2, c GII.4, d GII.6, and e GII.17 is shown as a line graph. Blue indicates cases at childcare and educational facilities, red indicates cases involving 
food poisoning, orange indicates cases at elderly nursing homes, and green indicates others. The vertical axis shows the number of outbreaks, and 
the horizontal axis shows the season and month of appearance



Page 6 of 15Motoya et al. Gut Pathog           (2019) 11:26 

genotypes in Ibaraki Prefecture are compatible with 
those in other reports [13, 17, 23–27].

Previous studies have demonstrated that the GII virus 
was frequently detected compared with the GI virus from 
the NoV infection [28–31], which was consistent with our 
results. In contrast, both the GI and GII virus genomes 
were detected in environmental water at equivalent fre-
quencies using real-time RT-PCR [32, 33] possibly due 
to the difference in stability between the GI and GII cap-
sid proteins [34]. Indeed, Pogan et  al. [34] showed that, 
unlike the GII.17 virus, the GI.1 virus may not be stable 
at high pH (over pH 8) using virus-like particles; how-
ever, this study did not examine the infectivity. We spec-
ulate that the stabilities of the virus particles between GI 
and GII viruses reflect the infectivity of these viruses to 
humans.

The phylogenetic tree of GII.4 created here showed 
that almost all detected strains were of the Sydney 2012 
type, although these strains formed many small clusters 
in the tree (Fig. 3c). Previous reports have suggested that 

GII.4 suddenly emerged and caused pandemics of gastro-
enteritis in the 2006/2007 season (Den Haag 2006b type) 
and that some GII.4 variants such as Osaka 2007, Apel-
doorn 2007, New Orleans 2009, and Sydney 2012 were 
subsequently generated [4, 35–37]. Among these, Sydney 
2012 type caused as many pandemics of gastroenteritis 
as Den Haag 2006b type [4, 35]. The results suggested 
that the GII.4 Sydney variant was also associated with 
gastroenteritis outbreaks at childcare and educational 
facilities, in cases of food poisoning, and at elderly nurs-
ing homes. This finding is compatible with the previous 
reports [36, 38], which suggested that GII.4 was the most 
dominant type during the 2006–2014 seasons, whereas a 
small number of GII.2 were detected in this period [20, 
39, 40]. However, GII.2 was the most prevalent type in 
the 2016/2017 season in various countries, including 
Germany, France, USA, China, and Japan [16, 17, 25, 
26]. In Ibaraki Prefecture, GII.2 was also detected from 
many outbreaks in the 2016/2017 season associated with 
childcare and educational facility. In the phylogenetic 

Table 4 The patient age of each norovirus genotype

Genotype
Number of 
samples
Mean ± SD
Median

GI

244

25.8 ± 19.0
21

* * * * * *

GII.4

1030

36.3 ± 31.1
30

GII.2

683

15.1 ± 16.9
7

GII.17

* * * * * *

* * *

* * *
* *

279

36.5 ± 26.1
32

GII.6

200

11.0 ± 11.9
5.5

The asterisks represent p-values as follows: * p < 0.05, ** p < 0.01, *** p < 0.001

Table 5 Viral load  (log10) in the patient of each norovirus genotype

Genotype
Number of 
samples
Mean ± SD
Median

GI

239

4.2 ± 1.8
4.7 

* * * * * *

GII.4

971

4.5 ± 1.7
4.7 

GII.2

679

5.0 ± 1.5
5.3 

GII.17

* 

* * *
* *

279

4.3 ± 1.6
4.7 

GII.6

193

4.5 ± 1.7
5.0 

The asterisks represent p-values as follows: * p < 0.05, ** p < 0.01, *** p < 0.001
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Fig. 2 Gene phylogenetic tree was created by the ML method using 295 or 298 nt (GI) and 282 nt (GII) from the 5′‑end of VP1. a Gene phylogenetic 
tree of GI. Nucleotide substitution model was GTR + Gamma. b Gene phylogenetic tree of GII.2. Nucleotide substitution model was K80 + Gamma. c 
Gene phylogenetic tree of GII.4. Nucleotide substitution model was K80 + Gamma. d Gene phylogenetic tree of GII.6. Nucleotide substitution model 
was K80 + Gamma. e Gene phylogenetic tree of GII.17. Nucleotide substitution model was GTR + Invariant. The strains detected in this study were 
shown as a black circle. Strains detected in multiple cases are shown in bold. The site of the outbreaks and their number are described at the end of 
the strain name. Cases at childcare and educational facilities (C) are colored blue, cases involving food poisoning (F) are colored red, those at elderly 
nursing homes (E) are colored orange, and others (O) are colored green
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tree created here, distinct clusters were formed by the 
GII.2 strains detected in the 2016/2017 season and 
those from other seasons [20, 40]. It is suggested that 
the GII.2 strains detected in the 2016/2017 season were 
recombinant, which is compatible with the findings from 

very recent studies [16]. Although we did not examine 
the polymerase type of the present GII.2 strains, such 
recombination may have been associated with the prev-
alence of GII.2 in Ibaraki Prefecture. Next, GII.17 was 
detected from the 2013/2014 season onwards, which was 

Cluster 1

Cluster 2

Cluster 3
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associated with many food poisoning outbreaks in Iba-
raki (Table  3). Moreover, the periods of greatest preva-
lence differed between GII.17 and other genotypes such 
as GII.2, GII.4, and GII.6 (Fig.  1). The reason for this is 

not understood, but this finding is also compatible with 
previous reports [41, 42].

Next, we examined the viral loads among infections 
with viruses of various genotypes including GII.2, 

DenHaag 2006b

Sydney 2012
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GII.4, GII.6, and GII.17. The results showed that the 
viral loads of GII.2 were higher than for the other gen-
otypes and the age of patients infected with HuNoV 
GII.6 was lower than for the other genotypes. Previous 
reports suggested that the HuNoV viral loads in feces 
are associated with the age and immunity status of the 

hosts, although the reasons for this are not known [43, 
44]. Although there are few previous reports describ-
ing the viral load of HuNoV, the propagation rate of 
GII.2 may not be higher than that of other genotypes 
[45, 46]. A possible reason for this is that we did not 
examine the differences in propagation among the 
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genotypes and did not take into account the number 
of days since the patient had developed symptoms in 
this study. Moreover, the methods used in this study 
possibly cannot be used to analyze samples containing 
low numbers of the NoV genomes (approximately > 10 
copies/experiment). However, if samples contain large 

numbers of genomes of different NoV genogroups, we 
may be able to analyze genotypes of plural NoV geno-
group in each sample. In this study, we could analyze 
plural NoV genogroups in 23 samples of 19 cases. 
Currently, Next Generation Sequencing is expensive; 
therefore, in this study, we used conventional methods 

0.02

KX244854/Hu/Norovirus/16-G0188/Ger/2016

KX168437/Hu/GII.17/CUHK-NS-767/HKG/2015
2014/15.14-711 and 1 strain/1C1F

LC043139/Hu/GII.17/Nagano7-1/JP/2014

2016/17.16-815 and 3 strains/3F1O

2015/16.15-750/F

2016/17.16-432/O

2015/16.16-58/F

KU557807/Hu/GII.17/15-1649/GD-QY/2014

2016/17.16-905 and 1 strain/1C1F

LC160198/Hu/GII.17/M15-003/JP/2015

LC160197/Hu/GII.17/M15-002/2015/JP

2013/14.14-342/F

KU557860/Hu/GII.17/35-0584/GD-JM/2015

KP335068/Hu/GII.17/SH20140415-N25/Shanghai/CHN/2014

LC160201/Hu/GII.17/M15-010/JP/2015

2014/15.14-845/F

KT716742/Hu/GII.17/JB031520060/CHN/2015

2016/17.16-867/F

2015/16.15-364/C

2014/15.14-811/C

AY502009/Hu/NoV/CS-E1/USA/2002

2015/16.16-39/F

KT633393/Hu/GII.17/1405Y098/CHN/2014

2015/16.15-299 and 16 strains/4C10F3E

2014/15.14-926/F

2014/15.14-906/F

2015/16.15-607 and 1 strain/1C1F

2015/16.15-737 and 1 strain/1F1O

2016/17.17-109/F

LC169540/Norovirus/GII.17/S130130/JPN/2013

2017/18.17-594 and 3 strains/1C1F2O

2014/15.14-713 and 16strains/5C12F

2015/16.15-583 and 1 strain/2F

LC043167/Hu/GII.17/Saitama5203/JP/2013

2015/16.15-760/E

LC101820/Hu/GII.17/MIY2/Jp/2015

KU557888/Hu/GII.17/7-0057/GD-ZH/2015

KX061540/Hu/GII.17/Arg13099/ARG/2015

2015/16.15-423 and 2 strains/1C2F

LC148854/Hu/GII.17/Osaka15-428/JP/2016

DQ438972/Hu/NoV/Katrina-17/US/2005

2014/15.14-792 and 3strains/1C2E1O

AB983218/Hu/GII.17/Kawasaki323/JP/2014

2017/18.17-600 and 1 strain/2F

2015/16.15-379/C

2012/13.13-89/F

LC037415/Hu/GII.17/Kawasaki308/JP/2015

JN699043/Hu/GII.17/C142/GF/1978

KR020503/Hu/GII.17/41621/Guangzhou/CHN/2014

2016/17.16-981/E

2014/15.15-21/F

KJ196286/Hu/GII.17/Saitama/T87/JP/2002

2015/16.15-461/O

2014/15.15-111/C

2016/17.17-194/F

KJ946403/Norovirus/GII.17/Sep11-A2/Limbe/Cameroon/2011

LC160202/Hu/GII.17/M15-012/JP/2015

KP998539/Hu/GII.17/CUHK-NS-463/HKG/2014
KR154230/Hu/GII.17/CGMH69/TW/2015

Cluster 1

Cluster 2

e

Fig. 2 continued



Page 12 of 15Motoya et al. Gut Pathog           (2019) 11:26 

Series3

Series2

different

same

different cluster
same cluster

different variant
same variant

different cluster
same cluster

b GII.2 c GII.4

d GII.6 e GII.17

500

250

0

1800

1200

600

00.02     0.04      0.06     0.08     0.1    

90

60

30

0

140

70

0

N
um

be
r o

f s
eq

ue
nc

e 
pa

irs

N
um

be
r o

f s
eq

ue
nc

e 
pa

irs

N
um

be
r o

f s
eq

ue
nc

e 
pa

irs

N
um

be
r o

f s
eq

ue
nc

e 
pa

irs

N = 1,128
Mean ± SD = 0.020 ± 0.012
Median = 0.018

N = 4,186
Mean ± SD = 0.021 ± 0.010
Median = 0.018

N = 231
Mean ± SD = 0.046 ± 0.036
Median = 0.021

N = 253
Mean ± SD = 0.017 ± 0.015
Median = 0.014

Pairwise distance
Different cluster
Same cluster

Different cluster
Same cluster

0.02     0.04      0.06     0.08     0.1    
Pairwise distance

0.02     0.04      0.06     0.08     0.1    
Pairwise distance

0.02     0.04      0.06     0.08     0.1    
Pairwise distance

Different cluster
Same cluster

Different cluster
Same cluster

a GI

0.05               0.1              0.15             0.2             0.25    
Pairwise distance

Different genotype
Same genotype

200

100

0N
um

be
r o

f s
eq

ue
nc

e 
pa

irs
N = 861
Mean ± SD = 0.18 ± 0.07
Median = 0.203
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to analyze the samples as previously described [47]. 
Thus, further studies may be needed to clarify the epi-
demiology of HuNoV.

Conclusions
We showed in this study that many HuNoV genotypes, 
including GII.2, GII.4, GII.6, and GII.17, were associ-
ated with various types of outbreak sites (at childcare and 
educational facilities, in cases of food poisoning, and at 
elderly nursing homes) in this study. These genotypes 
emerged in recent years, and they exhibited distinct pat-
terns of prevalence. Moreover, differences in the outbreak 
sites and viral load of patients were identified among the 
genotypes. To better understand the molecular epidemi-
ology of HuNoV infection, ongoing molecular epidemio-
logical studies may be needed.

Methods
Sample collection
Fecal specimens and patient information were collected 
for the following two types of outbreak cases among 
the surveillance system in Ibaraki Prefecture in Japan: 
(1) group cases that suspected outbreaks of human-to-
human infectious disease and (2) group cases that sus-
pected outbreaks of foodborne infectious disease. Public 
health centers collected information and specimens from 
the patients in both cases. In this study, we targeted pop-
ulation outbreak patients; therefore, whether the patients 
were administered to hospitals remains unknown. 
Patients without data on sex and age were omitted, and 
a total of 4588 specimens were collected by surveillance 
in the six seasons from September 2012 to August 2018 
(Table 1).

Epidemiological data analyses
For each genotype, we compared and considered the 
epidemiological data of specimens positive for HuNoV 
GII (season, age group, viral load, and site of infection). 
Infection cases were classified into the following four 
groups regarding the site of infection as well as the age 
of the patients: (1) kindergarten, nursery school, and pri-
mary school (childcare and educational facilities: C), (2) 
suspected food poisoning (F), (3) elderly nursing homes 
(E), and (4) others (O).

In this study, food poisoning was defined as the out-
breaks of the gastroenteritis due to foods served for com-
mercial purposes from the food provision facility.

Detecting norovirus GII, sequencing, and genotyping
Fecal specimens were adjusted to 10  wt% with phos-
phate-buffered saline and centrifuged at 10,000×g for 
10 min at 4 °C. The nucleic acids were extracted from the 

supernatant using QIAamp Viral RNA Mini Kit (Qiagen). 
Subsequently, complementary DNA (cDNA) was pre-
pared by reverse transcription using PrimeScript™ RT 
Reagent Kit (Perfect Real Time) (Takara Bio). It was then 
used for quantitative polymerase chain reaction (q-PCR), 
which was performed using the TaqMan probe PCR sys-
tem as described previously [48].

All RNA for which HuNoV GI and GII were deter-
mined to be positive by q-PCR was amplified using the 
PrimeScript™ II High Fidelity One Step RT-PCR Kit 
(Takara Bio) with G1SKF/G1SKR and G2SKF/G2SKR 
primers, respectively [47]. The nucleic acid sequence of 
the PCR product was determined by direct sequencing 
using the BigDye Terminator v3.1 Cycle Sequencing Kit 
(Thermo Fisher Scientific). The resulting sequence was 
genotyped using the Norovirus Genotyping Tool [49]. If 
the genotypes were the same among samples collected in 
the same case, one sequence was selected, and a dataset 
of the gene sequence was prepared.

Calculation of pairwise distance
We analyzed pairwise distances to assess the genetic dis-
tances between human GII strains detected in Ibaraki 
Prefecture. Among the viral genes, 100% matched strains 
were omitted and pairwise distance values were calcu-
lated using MEGA 6 [50].

Phylogenetic tree analysis
The obtained gene sequence was compiled for each gen-
otype, and a dataset was obtained by adding standard 
strains. We revealed the nucleotide substitution model 
with KAKUSAN 4 [51] and performed a phylogenetic 
tree analysis using the maximum likelihood method with 
MEGA 6 [50]. The strains detected in this study are indi-
cated as a black circle. When 100% homologous sequence 
strains were detected in the same season, only one strain 
was retained and indicated in bold; the other sequence(s) 
was omitted from the dataset. The sites regarding the 
outbreaks and their number are described at the end of 
the strain name. In addition, cases involving childcare 
and educational facilities (C) are colored blue, those 
involving cases of food poisoning (F) are colored red, 
those at elderly nursing homes (E) are colored orange, 
and others (O) are colored green.

Statistical analysis
Statistical analysis was performed using EZR software 
[52]. After conducting the Kruskal–Wallis test as a sta-
tistical analysis on the age and viral load distribution of 
patients in each genotype, Holm’s multiple comparison 
test was performed.
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