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Abstract 

Background: Campylobacter jejuni infections constitute serious threats to human health with increasing prevalences 
worldwide. Our knowledge regarding the molecular mechanisms underlying host–pathogen interactions is still lim‑
ited. Our group has established a clinical C. jejuni infection model based on abiotic IL‑10−/− mice mimicking key fea‑
tures of human campylobacteriosis. In order to further validate this model for unraveling pathogen‑host interactions 
mounting in acute disease, we here surveyed the immunopathological features of the important C. jejuni virulence 
factors FlaA and FlaB and the major adhesin CadF (Campylobacter adhesin to fibronectin), which play a role in bacte‑
rial motility, protein secretion and adhesion, respectively.

Methods and results: Therefore, abiotic IL‑10−/− mice were perorally infected with C. jejuni strain 81‑176 (WT) or 
with its isogenic flaA/B (ΔflaA/B) or cadF (ΔcadF) deletion mutants. Cultural analyses revealed that WT and ΔcadF but 
not ΔflaA/B bacteria stably colonized the stomach, duodenum and ileum, whereas all three strains were present in 
the colon at comparably high loads on day 6 post‑infection. Remarkably, despite high colonic colonization densities, 
murine infection with the ΔflaA/B strain did not result in overt campylobacteriosis, whereas mice infected with ΔcadF 
or WT were suffering from acute enterocolitis at day 6 post‑infection. These symptoms coincided with pronounced 
pro‑inflammatory immune responses, not only in the intestinal tract, but also in other organs such as the liver and 
kidneys and were accompanied with systemic inflammatory responses as indicated by increased serum MCP‑1 con‑
centrations following C. jejuni ΔcadF or WT, but not ΔflaA/B strain infection.

Conclusion: For the first time, our observations revealed that the C. jejuni flagellins A/B, but not adhesion mediated 
by CadF, are essential for inducing murine campylobacteriosis. Furthermore, the secondary abiotic IL‑10−/− infection 
model has been proven suitable not only for detailed investigations of immunological aspects of campylobacteri‑
osis, but also for differential analyses of the roles of distinct C. jejuni virulence factors in induction and progression of 
disease.
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Background
Campylobacter jejuni are spiral-shaped, highly motile, 
Gram-negative bacteria that frequenly asymptomati-
cally colonize birds, including poultry. In humans the 
bacteria cause campylobacteriosis, the most prevalent 
cause for enteric bacterial infections [1–4]. Human 
C. jejuni infections are predominantly caused by con-
sumption of contaminated animal products and sur-
face water [5]. Campylobacteriosis is accompanied with 
clinical manifestations such as abdominal pain, fever, 
and watery or bloody diarrhea that are mostly self-
limiting [1, 6, 7]. In a minority of cases, severe post-
infectious sequelae such as Guillain-Barré syndrome or 
reactive arthritis can occur [7, 8].

The exact molecular mechanisms underlying the 
development of acute and invasive enterocolitis that 
is typical for campylobacteriosis are unclear, but the 
immunopathological nature of the disease has been 
recognized for decades [6]. We and others have shown 
that C. jejuni interact with pattern recognition recep-
tors such as Toll-like receptor 4 (TLR-4) [9] and 
nucleotide-oligomerization-domain-2 (Nod2) [10, 11], 
and interfere with signaling pathways dependent on 
MAPK/ERK (mitogen-activated protein kinases/extra-
cellular signal-regulated kinases) and NF-κB (nuclear 
factor kappa-light-chain-enhancer of activated B cells) 
[12]. Activation of those signaling cascades induces the 
expression of a variety of immune response genes [13, 
14]. As a result, an inflammation response is triggered, 
characterized by the recruitment of immune cells to the 
site of infection and up-regulation of cytokine produc-
tion [14].

As a prerequisite for induced immunopathology, C. 
jejuni needs to adhere to and invade into epithelial host 
cells. Amongst a number of other factors, the flagellar 
filaments consisting of FlaA and FlaB, and the major 
adhesin CadF (Campylobacter adhesin to fibronectin) 
are considered to be major players in these processes 
[15]. To adhere to intestinal host cells, the bacteria need 
to cross the overlying mucus layer by flagella-generated 
motility [16]. Moreover, the flagellum can secrete mol-
ecules that promote C. jejuni adhesion to and invasion 
into host cells [17–20]. The adhesin CadF permits host 
cell adhesion by binding to the extracellular matrix 
protein fibronectin, which enables the interaction with 
integrin receptors and results in bacterial internaliza-
tion into host cells [19, 21, 22].

The dependence of adherence and invasion on fla-
gella has been demonstrated in  vitro and in  vivo by 
gene knockout experiments [23, 24]. It was also shown 
that knockout of cadF resulted in reduced adhesion and 
invasion of C. jejuni into host cells in vitro [21, 25] and 
abolished colonisation in the chicken host [26]. Both the 
flagellum and CadF also activate a signaling cascade in 
cultured INT-407 cells and other cell lines that results in 
the activation of the small Rho GTPase Rac1, which in 
turn leads to actin and/or microtubule rearrangements 
that trigger internalization of C. jejuni [27].

In order to study pathogenesis, treatment and prophy-
laxis of campylobacteriosis in vertebrate hosts in more 
detail, we have established a murine C. jejuni infection 
model based on secondary abiotic IL-10−/− mice that not 
only allows for investigation of colonisation properties, 
but also reproducibly displays clinical symptoms resem-
bling those of the compromized infected human host 
[28–30]. Applying this clinical infection model we  have 
recently shown, for instance, that C. jejuni lipooligosac-
charide (LOS) is essential for the induction of campy-
lobacteriosis and this pathogen surface molecule thus 
represent an important C. jejuni pathogenicity factor [28, 
31, 32].

To further validate this murine infection model for 
the study of C. jejuni virulence factors for induction and 
progression of acute disease, we here addressed whether 
bacterial flagella and the major adhesin CadF are pivotal 
prerequisites for inducing enteric disease in the murine 
host. To this aim, we infected secondary abiotic IL-10−/− 
mice with C. jejuni strain 81-176, its isogenic non-motile 
mutant ∆flaA/B and its CadF-deficient ∆cadF mutant. 
The colonization capacities of these isogenic strains 
were compared, while clinical outcome as well as intes-
tinal, extraintestinal and systemic immunopathologocal 
responses were monitored and bacterial translocation to 
extra-intestinal organs was determined.

Results
The impact of C. jejuni motility and adhesion to intestinal 
colonization following peroral infection of secondary 
abiotic IL‑10−/− mice
We first determined whether inactivation of flaA/B or 
cadF had an impact on gastrointestinal colonization of 
C. jejuni in the secondary abiotic IL-10−/− mice model, 
by comparing these mutants with isogenic WT bacteria. 
Approximately  109 viable bacteria of each strain were 
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orally fed on days 0 and 1. As early as 24 h following the 
first infection and until the end of the observation period 
(i.e., day 6 p.i.), median fecal pathogenic loads of up to 
 109 colony-forming units per g (CFU/g) were determined 
for all three tested bacterial strains (Fig. 1). At day 6 p.i., 
the animals were sacrificed and C. jejuni content of the 
complete gastrointestinal tract was quantified by cul-
ture. As expected, the highest loads were present in the 
ileum and colon, while stomach and duodenum con-
tained approximately four log lower counts (Fig. 2). The 
numbers of the ΔflaA/B mutant were lower in luminal 
samples taken from the stomach, duodenum, and ileum, 
compared to the other two strains (p < 0.001; Fig. 2a–c), 
but no difference was found in the colon (Fig. 2d). Hence, 
inactivation of flaA/B, but not of cadF, leads to a com-
promised colonization potential of C. jejuni in the proxi-
mal gastrointestinal tract, while colonization of the distal 
part of the gastrointestinal tract is not affected by these 
gene deficiencies. 

Clinical impact of C. jejuni motility and adhesion in infected 
secondary abiotic IL‑10−/− mice
We next addressed whether comparable colonic loads of 
the respective C. jejuni strains were associated with simi-
lar pathogen-induced disease outcomes. Whereas mice 
displayed increasing clinical scores starting at day 2 fol-
lowing infection with WT and ΔcadF bacteria, indica-
tive for progressive C. jejuni-induced disease (Fig.  3a, 
c), infection with the ΔflaA/B mutant left the mice clini-
cally uncompromised (Fig. 3b). In fact, by day 6 p.i., mice 
colonized with the WT strain were suffering from severe 
signs of campylobacteriosis including wasting and bloody 
diarrhea, while none of the animals infected with ΔflaA/B 
exerted symptoms, similar to mock infected control mice 
(p < 0.001; Fig. 4a); the ΔcadF infected mice, however, dis-
played slightly lower clinical scores as compared to WT 
strain infected counterparts (p < 0.005; Fig.  4a). Hence, 
despite high intestinal pathogenic loads, murine infection 
with the ΔflaA/B mutant did not result in overt campy-
lobacteriosis, whereas inactivation of the cadF gene only 
marginally impaired the ability to cause symptoms.

Relevance of C. jejuni motility and adhesion in induction 
of intestinal apoptosis and epithelial regeneration
Given that intestinal inflammation is accompanied by 
shortening of the affected intestinal compartment [28, 
33], we measured the colonic lengths upon necropsy. 
Irrespective of the applied strain, C. jejuni infected mice 
exhibited shorter large intestines as compared to mock 
control animals (p < 0.001; Fig. 4b). The effect was weaker 
for animals infected with the ΔflaA/B mutant, whose 
colonic lengths were longer compared to parental WT 

Fig. 1 Fecal shedding of C. jejuni over time following peroral 
infection of secondary abiotic IL‑10−/− mice. On days 0 and 1, 
the mice were perorally challenged with a C. jejuni 81‑176 WT 
(closed circles, here and in all other figures), b the isogenic mutant 
ΔflaA/B (crossed circles) or c the isogenic mutant ΔcadF (open 
circles). Individual fecal bacterial loads were surveyed over 6 days 
post‑infection by culture and expressed as CFU/g. Medians (black 
bars) and numbers of analyzed mice (in parentheses) are indicated, 
and data were pooled from four independent experiments (here and 
in all other figures)
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or ΔcadF challenge (p < 0.001 and p < 0.01, respectively; 
Fig. 4b).

We further addressed whether the lack of apparent 
symptoms upon ΔflaA/B infection could be corrobo-
rated microscopically. Given that apoptosis is regarded 
as a reliable marker for the grading of intestinal inflam-
matory conditions [31], we quantitatively assessed cas-
pase3 + colonic epithelial cell responses. The colonic 
samples from mice infected with ΔcadF and WT con-
tained significantly increased numbers of apoptotic cells 
(p < 0.001 vs naive), whereas slightly lower cells were 
apoptotic in the colonic epithelia following ΔcadF infec-
tion compared to WT (p < 0.001; Fig.  4c; Additional 
file  1: Fig. S1A); notably, no increase was observed fol-
lowing ΔflaA/B infection. Furthermore, the numbers of 
Ki67 + cells, indicative for cell proliferation and regenera-
tion, had increased considerably in the colonic epithelia 
of mice infected with ΔcadF or WT bacteria (p < 0.001 vs 
naive), whereas these cell numbers did not differ between 
ΔflaA/B infected and mock infected control mice 
(Fig. 4d; Additional file 1: Fig. S1B). Hence, in contrast to 

peroral challenge with WT and the ΔcadF mutant, infec-
tion with non-motile C. jejuni ΔflaA/B did neither result 
in significant macroscopic nor microscopic inflammatory 
sequelae. These observations make it unlikely that pres-
ence of the bacteria in the stomach and duodenum were 
solely due to coprophagy.

C. jejuni motility and adhesion in induction of colonic 
immune cell responses
The three C. jejuni strains were also compared for their 
ability to elicit innate and adaptive immune cell responses 
within the large intestines of infected mice. Peroral infec-
tion with the WT and ΔcadF, but not the ΔflaA/B strain 
was associated with a marked increase in innate immune 
cell subsets, such as F4/80 + macrophages and mono-
cytes in the colonic mucosa and lamina propria (p < 0.001; 
Fig. 5a; Additional file 1: Fig. S1C). Adaptive immune cells 
such as CD3 + T lymphocytes and B220 + B lymphocytes 
had all increased in the large intestinal mucosa and lam-
ina propria in the case of WT and ΔcadF (p < 0.001), but 
this was not observed during ΔflaA/B infection (Fig. 5b, 
c; Additional file 1: Fig. S1D, E). Interestingly, colonic T 
cell numbers were even slightly higher in animals that 
had received ΔcadF compared to WT (p < 0.05; Fig.  5b, 
c; Additional file  1: Fig. S1D). Hence, murine infection 
with the C. jejuni ΔcadF mutant and its parental strain, 
but not with the ΔflaA/B mutant, resulted in pronounced 
innate and adaptive immune cell responses in the large 
intestines.

C. jejuni motility and adhesion in intestinal 
pro‑inflammatory mediator secretion
We next measured pro-inflammatory mediators in dis-
tinct parts of the intestinal tract following C. jejuni infec-
tion. Colonic secretion of TNF-α and nitric oxide was 
increased exclusively upon infection with WT and ΔcadF 
strains (p < 0.001; Fig. 6a, c). Following WT strain infec-
tion only, colonic levels of IL-6 and IFN-γ were elevated 
(p < 0.01 and p < 0.001, respectively; Fig.  6b, d), which 
also held true for nitric oxide and IFN-γ concentrations 
in ex vivo biopsies derived from mesenteric lymph nodes 
(MLN) at day 6 p.i. (p < 0.001 and p < 0.01, respectively; 
Fig. 6e, f ).

Hence, murine infection with ΔcadF, but not ΔflaA/B 
deficient bacteria resulted in enhanced pro-inflammatory 
mediator secretion in the intestinal tract.

C. jejuni motility and adhesion in extra‑intestinal 
and systemic pro‑inflammatory immune responses
We next assessed whether the immunopathological 
differences observed between the C. jejuni cadF and 
flaA/B mutants were extended to extra-intestinal and 
even systemic compartments. For extra-intestinal sites, 

Fig. 2 Gastrointestinal loads of WT, ΔflaA/B and ΔcadF C. jejuni at day 
6 post‑infection. Bacterial loads were determined in a the stomach, b 
the duodenum, c the ileum, and d the colon at day 6 post‑infection 
following challenge with 81‑176 WT (closed circles), ΔflaA/B (crossed 
circles) or ΔcadF (open circles)
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we determined numbers of CD3 + T cells and TNF-α 
secretion in liver and kidneys. Infection with WT or 
ΔcadF but not ΔflaA/B resulted in elevated numbers 
of T lymphocytes in either organ (p < 0.001; Fig.  7a, b), 
and in slightly increased TNF-α secretion in the kid-
neys (p < 0.01–0.001; Fig. 7d). In the liver, however, only 
WT strain infection was associated with elevated TNF-α 

concentrations (p < 0.01; Fig.  8c). Furthermore, strain-
dependent differences in immunopathological responses 
upon C. jejuni infection could also be observed systemi-
cally: Mice infected with the WT, but not the ΔflaA/B 
strain produced increased systemic levels of TNF-α, IL-6, 
IFN-γ, and MCP-1 (p < 0.001; Fig.  8), whereas in ΔcadF 
infected mice, elevated MCP-1 serum concentrations 
could be measured (p < 0.05 vs mock; Fig. 8d).

We finally addressed whether the observed differ-
ences in extra-intestinal and systemic pro-inflammatory 
responses could be due to different levels of translo-
cated bacteria. Samples of various organs were cultured 
for presence of C. jejuni, which revealed their presence 
in MLN, liver, lungs, and spleen in a number of animals, 
though all cardiac blood cultures were negative (Fig. 9). 
The relative abundance of viable bacteria was lower in 
MLN, liver, lungs, and spleen of animals infected with 
ΔflaA/B compared to the other two strains, while culture 
of kidney homogenates resulted in fewer positive samples 
for the two mutants compared to WT. These data indi-
cate that murine infection with C. jejuni WT or the cadF 
mutant was accompanied with marked extra-intestinal 
and even systemic pro-inflammatory immune responses, 
that were absent in case of ΔflaA/B, and that these were 
paralleled by detectable amounts of viable organisms in 
various tissue sites. The lower numbers of ΔflaA/B bac-
teria in extra-intestinal organs suggests that these non-
motile bacteria were less able to translocate from the gut 
to other tissues.

Discussion
Both the bacterial flagella and the adhesin CadF are 
well-investigated pathogenicity and virulence factors 
of C. jejuni, respectively, and are considered key play-
ers for colonization and subsequent host cell invasion 
[2–4]. In  vitro studies revealed that CadF-mediated 
invasion of intestinal epithelial cells represents a crucial 
prerequisite for C. jejuni to initiate immunopathological 
responses via induction of cytokine responses [19, 21, 22, 
34–36]. In fact, these immunopathological sequelae of 
infection help to explain the severity of symptoms dur-
ing acute campylobacteriosis which are induced by cells 
of the innate immune system [37]. In our present study, 
we provide in vivo evidence that FlaA/B and CadF exert 
differential features in the interaction of C. jejuni and the 
mammalian host. By means of our clinical murine infec-
tion model, we show that C. jejuni flagellar motility but 
not adhesion exerted by CadF is required for induced 
immunopathology in the murine host. Neither inactiva-
tion of the flagellin genes nor of the cadF gene resulted in 
a compromized large intestinal colonization by C. jejuni 
as indicated by comparably high colonic loads of either 
bacterial strain. However, whereas WT bacteria and the 

Fig. 3 Clinical conditions over time of mice challenged with the 
three C. jejuni strains. Clinical conditions were monitored during the 
6 days post challenge with a WT, b ΔflaA/B, and c ΔcadF, and these 
were quantitatively assessed applying a standardized clinical scoring 
system
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cadF deficient mutant could also be isolated from the 
stomach, duodenum and ileum upon peroral infection, 
these sites were only poorly colonized by the non-motile 
mutant strain. This pronounced phenotype provides 
strong evidence that motility is required to allow C. jejuni 
to escape the unfavorable luminal conditions exerted by 

acids, bicarbonate and lytic enzymes within the lumen 
of the upper environmental tract, for instance. In this 
scenario motility allows the bacteria to reach mucus 
sites where the pathogen is protected from toxic influ-
ences and can adhere to epithelial cells to prevent passive 

Fig. 4 Macroscopic and microscopic parameters at day 6 post‑infection. Macroscopic C. jejuni induced sequalae determined at day 6 included a 
clinical conditions and b colonic length. Microscopic intestinal changes were quantitated by the average numbers of c colonic epithelial apoptotic 
cells (positive for caspase‑3, Casp3), and d of proliferating/regenerating cells (positive for Ki67) from six high power fields (HPF, ×400 magnification) 
per animal in immunohistochemically stained colonic paraffin sections at day 6 post‑infection. Mock challenged mice (open diamonds) served as 
negative controls
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transport to the colon where even the non-motile bacte-
ria accumulate due to the low peristaltics.

It is well established that flagella-deficient C. jejuni 
mutants are unable to colonize the gastrointestinal tract 
of infant mice [38, 39], of young chicks [40] and of pig-
lets [41]. However, a role of CadF in colonisation of the 
mammalian gut was mostly inferred from in  vitro data, 
as it was shown previously that cadF-deficient C. jejuni 
mutants poorly adhered to cultured mammalian cells 
[21, 25, 34], though CadF was reported to be essential 
for cecal colonization in chicken [26]. Our data provide 
strong evidence, however, that CadF is not essential for 
murine colonization, and only marginally affects the out-
come of infection. Thus, one or more different adhesin(s) 
are obviously required for C. jejuni colonization and dis-
ease development in mice. Because this might reflect the 
situation in humans, it will be important to identify these 
factors in further screens.

The difference between mutants deficient in flagellins 
or cadF extended beyond colonization capacity, given 
that there were also noted differences in their ability to 
generate macroscopic disease signs and microscopic 
inflammatory responses in the large intestines. Inter-
estingly, WT and cadF deficient bacteria were able to 
enhance pro-inflammatory mediator secretion in dis-
tinct compartments of the intestinal tract, which was 
not seen with the non-motile C. jejuni mutant lacking 
flagella. The murine model applied here also allowed to 
investigate the capacity to generate campylobacteriosis-
like symptoms in mice. Surprisingly, high numbers of C. 
jejuni present in the colon were not per se responsible 
for triggering disease, as could be demonstrated with the 
ΔflaA/B mutant that colonized the colon effectively, but 

did not cause enteric disease. In a recent study applying a 
murine C. jejuni induced enteritis model, however, mice 
could not be infected by a flaA-deficient mutant strain 
and did therefore not display any signs of enteritis [42]. 
Notably, in this study the gut microbiota of correspond-
ing mice was not completely eradicated and this leads to 
the assumption that the residual microbiota established 
after vancomycin treatment is responsible for the com-
plete colonization defect of the flaA deficient mutant. 
This provides evidence that motility is required to allow 
C. jejuni to escape from commensal bacteria that pro-
duce harmful metabolites and thus create an unfavorable 
environment for the pathogen.

In our study, the presence of symptoms coincided with 
the ability to generate intestinal, extra-intestinal and sys-
temic immune responses, which both WT bacteria and 
the ΔcadF mutant were capable of. This observation fur-
ther confirms the hypothesis of an immunopathological 
nature of campylobacteriosis. It has been hypothesized 
that bacterial invasion into host cells is regulated by pro-
inflammatory mediators in the gut [43] and this idea is 
in line with our observations, since non-motile mutant 
strains, that are impaired in their capacity to invade con-
currently exhibited far weaker immune responses.

A marked difference was further observed in the ability 
of C. jejuni to reach extra-intestinal sites. All three bacte-
rial strains could be isolated from extra-intestinal organs, 
but the numbers of viable bacteria were much lower for 
the non-motile ΔflaA/B mutant. As expected, it appeared 
that due to lack of flagella-dependent motility, fewer bac-
teria were able to reach liver, lungs, and spleen. Alterna-
tively, it has been shown that the flagellum of C. jejuni 
can act as a type III secretion apparatus for the delivery 

Fig. 5 Immune cell responses in the large intestine. The average numbers of immune cells were determined microscopically from six HPF (×400 
magnification) per infected or control animal using immunohistochemically stained colonic paraffin sections. Shown are data for a macrophages 
and monocytes (F4/80+), b T lymphocytes (CD3+), and c B lymphocytes (B220+)
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Fig. 6 Intestinal pro‑inflammatory mediator responses. Levels were determined for colonic a TNF‑α, b IL‑6, c nitric oxide, and d IFN‑γ and for e nitric 
oxide and f IFN‑γ in supernatants of ex vivo biopsies derived from mesenteric lymph nodes (MLN)
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of bacterial factors such as the Cia or Fed proteins into 
the extracellular milieu or directly into host cells in vitro 
[18–20]. Thus, certain exported C. jejuni proteins may 
also trigger the above responses in mice. Thus, future 
studies should be designed to provide evidence for one or 
both of these options.

Conclusion
For the first time, our presented in vivo data provide evi-
dence that C. jejuni FlaA/B, but not CadF are pivotally 
involved in inducing campylobacteriosis upon peroral 
infection of the vertebrate host. Future studies should 
unravel the underlying mechanisms of the host–patho-
gen interactions in more detail. Furthermore, the here 
applied clinical murine infection model of secondary 
abiotic IL-10−/− mice has been proven suitable not only 
for detailed investigations of immunological aspects of 

Fig. 7 Pro‑inflammatory immune responses in extra‑intestinal tissues. Data are shown for T lymphocytes (CD3+) (a, b) and for TNF‑α 
concentrations (c, d) in liver (a, c) and kidneys (b, d) of infected and control animals
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campylobacteriosis, but also for differential analyses of the 
roles of distinct C. jejuni virulence factors in induction and 
progression of disease.

Methods
Ethics approval
All animal experiments were conducted in accord-
ance with the European Guidelines for animal welfare 
(2010/63/EU) following approval of the protocol by 

the commission for animal experiments headed by the 
“Landesamt für Gesundheit und Soziales” (LaGeSo, 
Berlin, registration number G0247/16). Clinical condi-
tions of mice were surveyed twice daily.

Generation of secondary abiotic mice and C. jejuni 
infection
IL-10−/− mice of C57BL/6j background were reared and 
housed under specific pathogen free conditions. In order 

Fig. 8 Systemic pro‑inflammatory mediator responses following C. jejuni infection. Data are shown for a TNF‑α, b IL‑6, c IFN‑γ, and d MCP‑1 in serum 
samples taken 6 days post‑infection
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to counteract physiological colonization resistance and 
hence facilitate intestinal pathogenic colonization, sec-
ondary abiotic mice with a virtually depleted gut micro-
biota were generated upon broad-spectrum antibiotic 
treatment as reported earlier [31, 33].

Sex-matched, 3  months old mice were perorally 
infected with either the C. jejuni parental strain 81-176 
(WT), the isogenic flaA/B deletion mutant (ΔflaA/B), or 
the cadF deletion mutant (ΔcadF). An inoculum of  109 
CFU in 0.3  mL phosphate buffered saline (PBS; Gibco, 
life technologies, UK) was administered on two consecu-
tive days (i.e., days 0 and 1) by oral gavage. Mock con-
trol animals received an equal volume PBS perorally. 
Mice were maintained in a sterile environment and had 
unlimited access to autoclaved food and drinking water 
and were handled under strict aseptic conditions to avoid 
contamination.

Monitoring of clinical conditions
The clinical conditions of the mice were surveyed 
prior and post respective C. jejuni infections on a daily 
basis by applying a standardized cumulative clinical 
score (maximum 12 points). These scores included the 
abundance of blood in feces as detected by the Guajac 
method using a Haemoccult, Beckman Coulter (PCD, 
Krefeld, Germany) (score 0: no blood; 2: microscopic 
detection of blood; 4: macroscopic blood visible), pres-
ence of diarrhea (score 0: formed feces; 2: pasty feces; 
4: liquid feces), and by visual clinical and behavioral 
symptoms (score 0: normal; 2: ruffled fur and/or less 
locomotion; 4: isolation, severely compromised loco-
motion, pre-final aspect) as described earlier [29].

Sampling procedures
At day 6 post-infection (p.i.), the animals were sacri-
ficed upon isoflurane inhalation (Abbott, Germany). 
Luminal gastrointestinal samples from stomach, duode-
num, ileum and colon, and ex vivo biopsies from colon, 

Fig. 9 Bacterial loads of extra‑intestinal organs as a result of bacterial translocation. The bacterial loads were quantitatively assessed in ex vivo 
biopsies at day 6 p.i. derived from a MLN, b liver, c kidneys, d lungs, e spleen, and f cardiac blood by culture. The cumulative relative translocation 
rates of viable bacteria in each tissue out of four independent experiments are presented as %
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ileum, mesenteric lymph nodes (MLN), liver, kidneys, 
lungs, and spleen were taken under sterile conditions. 
Intestinal samples were collected from each mouse in 
parallel for microbiological, immunohistopathologi-
cal and immunological analyses. The absolute colonic 
lengths were measured with a ruler (in cm).

Immunohistochemistry
In situ immunohistochemical analyses were performed 
in colonic ex  vivo biopsies that had been immedi-
ately fixed in 5% formalin and embedded in paraffin 
as described earlier [44–46]. Paraffin sections (5 μm) 
of ex  vivo biopsies from colon, liver and kidneys were 
stained with primary antibodies directed against 
cleaved caspase 3 (Asp175, Cell Signaling, Beverly, MA, 
USA, 1:200) for detection of apoptotic epithelial cells; 
against Ki67 (TEC3, Dako, Denmark, 1:100) for detec-
tion of proliferating epithelial cells; against F4/80 (# 
14-4801, clone BM8, eBioscience, San Diego, CA, USA, 
1:50) for detection of macrophages/monocytes; against 
CD3 (#N1580, Dako, 1:10) for detection of T lympho-
cytes; and against B220 (No. 14-0452-81, eBioscience; 
1:200) for detection of B lymphocytes. Secondary anti-
bodies were used for detection as previously described 
[31, 47]. Positively stained cells were examined by light 
microscopy (magnification 100× and 400×), and for 
each mouse the average number of respective positively 
stained cells was determined within at least six high 
power fields (HPF, 0.287 mm2, 400× magnification) by 
an independent investigator using blinded samples.

Bacterial colonization
The number of viable C. jejuni bacteria was quantita-
tively assessed in feces over time p.i., in homogenates 
of ex  vivo biopsies taken MLN, spleen, liver, kidneys 
and lungs, and in cardiac blood at day 6 p.i. by culture 
as described elsewhere [31, 47]. The detection limit of 
viable bacteria was ≈ 100 CFU per g.

Pro‑inflammatory mediator detection in supernatants 
of intestinal and extra‑intestinal ex vivo biopsies
Colonic ex vivo biopsies were cut longitudinally, washed 
in PBS, and strips of approximately 1 cm2 tissue as well as 
ex vivo biopsies derived from MLN (3 lymph nodes), liver 
(approximately 1  cm3), one kidney (cut longitudinally), 
and one lung were placed in 24-flat-bottom well culture 
plates (Nunc, Germany) containing 500 μL serum-free 
RPMI 1640 medium (Gibco, life technologies, UK) sup-
plemented with penicillin (100 U/mL) and streptomycin 
(100  µg/mL; PAA Laboratories, Germany). After 18  h 
at 37  °C, culture supernatants were tested for tumor 

necrosis factor- (TNF-) α, interleukin (IL)-6, interferon 
(IFN)-γ, and monocyte chemoattractant protein (MCP)-1 
by the Mouse Inflammation Cytometric Bead Array 
(CBA; BD Biosciences, Germany) on a BD FACSCanto II 
flow cytometer (BD Biosciences). Nitric oxide was meas-
ured by the Griess reaction as reported previously [33]. 
Systemic pro-inflammatory mediator concentrations 
were assessed in serum samples.

Statistical analysis
Medians and levels of significance were determined by 
one-way ANOVA test followed by Tukey post-correction 
for multiple comparisons (GraphPad Prism v7, USA). 
Two-sided probability (p) values ≤ 0.05 were considered 
significant. Experiments were reproduced three times 
and pooled data are shown.

Additional file

 Additional file 1: Figure S1. Representative photomicrographs illustrat‑
ing apoptotic and proliferating colonic epithelial as well as immune 
cells responses in large intestinal and extra‑intestinal compertments in 
secondary abiotic IL‑10−/− mice following peroral flaA/B or cadF gene 
deficient C. jejuni infection. Secondary abiotic IL‑10−/− mice were perorally 
challenged either with the C. jejuni 81‑176 wildtype strain (WT), the 
isogenic flaA/B gene deletion mutant (ΔflaA/B) or the isogenic cadF gene 
deletion mutant (ΔcadF) by gavage on days 0 and 1. Mock mice served as 
negative controls. Photomicrographs reepresentative for four independ‑
ent experiments illustrate (A) apoptotic colonic epithelial cells (Casp3+), 
(B) proliferating colonic epithelial cells, large intestinal (C) macrophages 
and monocytes (F4/80+), (D) T lymphocytes (CD3+), (E) B lymphocytes 
(B220+) and furthermore, (F) hepatic and (G) renal T lymphocytes (CD3+) 
in at least six high power fields (HPF) as quantitatively assessed in respec‑
tive paraffin sections applying in situ immunohistochemistry at day 6 
post‑infection (100× magnification, scale bar 100 μm).
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