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Abstract 

Background:  COVID-19 pandemic is sweeping across the world. Previous studies have shown that gut microbiota 
is associated with COVID-19, and operational taxonomic unit (OTU) composed of Blautia genus, Lactobacillus genus, 
and Ruminococcus genus of Firmicutes is correlated with the severity of COVID-19. Gut microbiota imbalance in colo-
rectal cancer patients may lead to the variation of OTU.

Results:  Based on the GMrepo database, the gut microbiota of 1374 patients with colorectal neoplasms and 27,329 
healthy people was analyzed to investigate the differences in the abundance of microbes between colorectal neo-
plasms patients and healthy people. Furthermore, We collected feces samples from 12 patients with colorectal cancer 
and 8 healthy people in Xiangya hospital for metabolomic analysis to investigate the potential mechanisms. Our 
study showed that the abundance of Blautia and Ruminococcus was significantly increased in colorectal neoplasms, 
which may increase the severity of COVID-19. The gender and age of patients may affect the severity of COVID-19 by 
shaping the gut microbiota, but the BMI of patients does not.

Conclusions:  Our work draws an initial point that gut microbiota imbalance is a risk factor of COVID-19 mortality and 
gut microbiota may provide a new therapeutic avenue for colorectal cancer patients.
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Introduction
Since being firstly reported in December 2019, COVID-
19 has been rapidly spreading around the world and 
bringing about unfolding health and socioeconomic 
impacts. On February 26, 2021, the number of patients 
infected with COVID-19 worldwide has reached 
112,981,257 and the number of deaths has reached 

2,507,271 [1]. Accumulating evidence indicated that gut 
microbiota is related to COVID-19 infection [2–4]. ACE2 
is the receptor of COVID-19, and also plays an impor-
tant role in curbing intestinal inflammation [4, 5]. ACE2 
is expressed in both respiratory and digestive tracts, and 
gut microbiota is closely related to the expression level of 
ACE2 [6, 7]. Besides, metabolites of gut microbiota are 
also important in the regulation of the human immune 
system, which may be related to the cytokine storm pro-
duced by COVID-19 [8]. Previous studies of COVID-19 
have found that a large proportion of patients developed 
intestinal symptoms, which further suggests that gut 
microbiota may be related to COVID-19 infection [9].

Previous studies showed that the condition of COVID-
19 patients during hospitalization was closely related to 
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the abundance of gut microbiota, and firmicutes might 
play an important role. Gou et  al. found [10] that the 
Blautia genus, Lactobacillus genus, and Ruminococcus 
genus of Firmicutes in the gut microbiota of COVID-
19 patients is correlated with the expression of multiple 
inflammatory molecules. Meanwhile, the operational 
taxonomic unit (OTU) composed of these three genera is 
correlated with the severity of COVID-19.

COVID-19 patients with cancer, including colorectal 
cancer (CRC), have a higher risk of severe events than 
their counterparts who do not have cancer, which may be 
associated with advancing age, male sex, but its relation-
ship to gut microbiota need to be further researched [11, 
12]. It is more difficult to treat COVID-19 patients with 
cancer than others because of their complex immune 
environment [13, 14], and gut microbiota may provide a 
new therapeutic avenue for these patients. Previous stud-
ies showed that the occurrence, development, and treat-
ment of a variety of cancers, including colorectal cancer, 
are strongly related to gut microbiota [15–18]. The gut 
microbiota spectrum of colorectal cancer patients is 
significantly different from that of the healthy control 
group, with the increase of Fusobacterium nucleatum, 
Parvimonas, Peptostreptococcus, Porphyromonas, and 
Prevotella genera [19–26]. Also, several studies indicated 
that the abundance of Blautia [27, 28] and Ruminococ-
cus [29, 30] changed in the gut microbiota of colorectal 
cancer patients, and changes in the abundance of these 
Microbes may affect the severity of COVID-19 disease. 
However, the correlation between the gut microbiota of 
tumor patients and COVID-19 remains to be studied.

In this study, the public database (GMrepo) was used 
to analyze the differences in the abundance of microbes 
in 1374 patients with colorectal neoplasms and 27,329 
health control people. Meanwhile, the data of Blautia 
Genus, Lactobacillus Genus, and Ruminococcus Genus 
were screened out for subgroup analysis of age, sex, and 
BMI. Feces samples from 12 patients with colorectal 
cancer and 8 healthy people were collected for metabo-
lomic analysis to study the relationship between microbe 
abundance and inflammatory factors in patients with 
colorectal cancer. This study suggests that changes in the 
microbiota of patients with colorectal cancer may exacer-
bate the condition of patients with COVID-19, and that 
gut microbiota may be a potential therapeutic target.

Methods
Dataset source and preprocessing
GMrepo database
GMrepo (data repository for Gut Microbiota) is a data-
base of curated and consistently annotated human gut 
metagenomes. The clinical features, abundances, and 

prevalence were retrieved from GMrepo. All 1374 Colo-
rectal Neoplasms patients and 27,329 Health people were 
included (Additional file 1: Table S1).

Gene‑Expression Omnibus (GEO) database
A public expression dataset with gut microbiota and 
cytokines about colorectal cancer patients was gathered 
from GEO. GSE136682 [18] was selected and down-
loaded using GEOquery.

Validation Cohort and fecal sample collection
Sequence Read Archive (SRA) database
To further validate our results, gut microbiota about CRC 
patients and healthy control was downloaded from SRA 
with accession numbers SRP005150 [31] and SRP149108 
[32]. SRP005150 contains 102 samples, of which 46 sam-
ples are CRC patients. SRP149108 contains 23 samples, 
of which 11 samples are CRC patients. Student’s t-test 
was used to analyze the two datasets.

Furthermore, a prospective cohort was performed. 
Fecal samples from 12 colorectal cancer patients and 8 
Health people were collected in Xiangya Hospital of Cen-
tral South University from June 2020 to July 2020. The 
proportion of male patients and elderly patients (> 65) 
in both groups was 50%. The clinical data including age, 
gender, and pathological reports were obtained from the 
electronic medical records (EMR) system (Additional 
file  1: Table  S2). This study was reviewed and approved 
by the Xiangya Hospital Medical Ethics Committee of 
Central South University. All qualified stool samples were 
self-sampled and immediately sent to the laboratory, 
placed in frozen pipes, and stored at -40℃ for further 
testing.

Metabolomics analysis
A liquid chromatography–mass spectrometry (LC–MS) 
system (Q Exactive Orbitrap, Thermo Fisher Scientific, 
USA) was utilized to analyze the metabolomics of the 
fecal samples of Validation Cohort in positive and nega-
tive ion modes. 50  mg fecal sample was placed into an 
Eppendorf (EP) tube and added with extraction sol-
vent (acetonitrile methanol–water, 2:2:1) 1000μL, then 
vortexed for the 30  s, homogenized shook for 4  min at 
45  Hz, and repeated 3 times. Then the samples were 
stored at -20℃ for 1 h, and centrifugation at 12,000 RPM, 
4℃ for 15  min. The obtained supernatant was trans-
ferred to LC–MS bottles and stored at 80℃, followed by 
UHPLC-QE Orbitrap/MS analysis. Mixing the superna-
tant of all samples evenly as quality control (QC) sample. 



Page 3 of 12Cai et al. Gut Pathogens           (2021) 13:70 	

An ultra-high-performance liquid chromatography 
(UHPLC) system was subsequently used for LC–MS/MS 
analysis.

Statistics analysis
The final Metabolomics dataset containing the informa-
tion of peak number, sample name, and normalized peak 
area was imported to the SIMCA16.0.2 software package 
(Sartorius Stedim Data Analytics AB, Umea, Sweden) 
for multivariate analysis. To visualize group separation 
and find significantly changed metabolites, supervised 
orthogonal projections to latent structures-discriminate 
analysis (OPLS-DA) were applied. Then, sevenfold cross-
validation was performed to calculate the value of R2 
and Q2, and 200 times permutations were further con-
ducted. We calculated the correlation coefficient of the 
quantitative value of importantly changed metabolites 
using the Pearson method and presented it in the form of 
a thermal map. Besides, to conduct pathway abundance 
analysis, KEGG databases (http://​www.​genome.​jp/​kegg/) 
and MetaboAnalyst (http://​www.​metab​oanal​yst.​ca/) 
were used. The student’s t-test was used to calculate the 
P-value. R (version 3.6.3) and ggplot and GEO query were 
used for data analysis. The metabolites with VIP (variable 
importance in the projection) > 1 and p < 0.05 were con-
sidered as importantly changed metabolites.

Results
The abundances of Blautia genus and Ruminococcus genus 
in colorectal neoplasms patients are higher than health 
control
To investigate the differences between colorectal neo-
plasms patients’ gut microbiota and healthy controls, 
data from the Gmrepo database was used. In the colorec-
tal cancer group, the 10 bacterial genera with the high-
est abundance are Subdoligranulum, Faecalibacterium, 
Alistipes, Bacteroides, Phascolarctobacterium, Blautia, 
Ruminococcus, Eubacterium, Parabacteroides, Cateni-
bacterium. In the health group, the top 10 are Melisso-
coccus, Faecalibacterium, Subdoligranulum, Bacteroides, 
Alistipes, Eubacterium, Parabacteroides, Ruminococcus, 
Blautia, Bifidobacterium. Lactobacillus genus ranks 63 in 
colorectal neoplasms patients and 55 in healthy people. 
Blautia and Ruminococcus rank significantly higher in 
colorectal neoplasm patients than in health control peo-
ple (Fig. 1).

The differences in abundance levels of Blaautia, Rumi-
nococcus, and Lactobacillus were further analyzed and 
compared. Abundance data of 1374 colorectal neoplasms 
patients and 27,329 health people were analyzed (Addi-
tional file  1: Table  S1), and results showed that median 
values of the abundance of colorectal neoplasms vs. 
health were respectively: Blautia (1.47 vs. 1.11, P < 0.001), 

Fig. 1  The abundance of Gut microbiota in colorectal cancer patients and healthy control controls based on Gmrepo Database. Blautia and 
Ruminococcus rank significantly higher in colorectal neoplasm patients than in healthy control people

http://www.genome.jp/kegg/
http://www.metaboanalyst.ca/
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Fig. 2  A The linear graph showed the abundance of Blaautia in colorectal neoplasm patients and healthy people. B The box plot showed the 
abundance of Blaautia in colorectal neoplasm patients and healthy people, which was significantly increased in colorectal neoplasm patients. C The 
linear graph showed the abundance of Lactobacillus in colorectal neoplasm patients and healthy people. D The box plot showed the abundance 
of Lactobacillus in colorectal neoplasm patients and healthy people. E The linear graph showed the abundance of Ruminococcus in colorectal 
neoplasm patients and healthy people. F The box plot showed the abundance of Ruminococcus in colorectal neoplasm patients and healthy 
people.** p < 0.01. G The relative abundance of Blautia of CRC patients and control in SRP005150. H The relative abundance of Ruminococcus of 
CRC patients and control in SRP149108
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Ruminococcus (1.44 vs. 1.13, P < 0.001), Lactobacillus 
(0.0347 vs. 0.0314, P = 0.539). Our study showed that the 
abundance of Blaautia and Ruminococcus in colorectal 
neoplasm patients was significantly increased (Fig.  2A–
D), but there was no significant difference in the abun-
dance of Lactobacillus (Fig. 2E, F).

To validate the results, two other datasets were ana-
lyzed. Analysis of data in SRP005150 showed that Blaau-
tia enrichment was different between colorectal cancer 
patients and healthy controls (P = 0.027) (Fig. 2G). Data 
analysis in SRP149108 showed that the enrichment 
degree of Ruminococcus was different between colorectal 
cancer patients and healthy controls (P = 0.006) (Fig. 2H).

The correlation of gut microbiota and clinical features 
in colorectal neoplasms
To investigate the relationship between clinical charac-
teristics and Blautia Genus, Lactobacillus Genus, and 
Ruminococcus Genus, the data of gender, age, and BMI 
were selected for subgroup analysis (Additional file  1: 
Table S2). In terms of age, previous studies showed that 
65  years of age is a risk factor for COVID-19 mortality 
[33]. We used 65 as the cut-off point. Abundance of gut 
microbiota of > 65 vs. < 65 are respectively: Blautia(2 .814 
vs. 2.168, P = 0.0002, Fig.  3A), Lactobacillus (0.155 vs. 
0.059, P = 0.078, Fig. 3C), Ruminococcus (3.467 vs. 3.377, 
P = 0.346, Fig.  3D). In addition, the correlation between 
Blaautia and age was further analyzed, and the results 
showed that they were positively correlated (Cor. = 0.186, 
P < 0.0001, Fig.  3B). These results show that in older 
patients, Blautia Genus has a higher abundance.

Previous studies found that gender is also a risk factor 
for COVID-19 [34, 35]. Abundance of gut microbiota of 
Female vs. Male are respectively: Blautia(2.579 vs. 2.404, 
P = 0.904, Fig. 3E), Lactobacillus(0.164 vs. 0.080, P = 0.335, 
Fig.  3F), Ruminococcus (2.536 vs. 4.407, P = 0.0479, 
Fig. 3G). These results indicate that male patients have a 
higher abundance of Ruminococcus genus.

Previous studies suggested that BMI was also asso-
ciated with the fatality of COVID-19, and we divided 
patients into two groups using BMI = 31 as a cutoff 
point [36]. Abundance of gut microbiota of BMI > 31 

vs. BMI < 31 are respectively: Blautia (3.162 vs. 2.635, 
P = 0.991, Fig.  3H), Lactobacillus (0.165 vs. 0.0474, 
P = 0.103, Fig.  3I), Ruminococcus (4.122 vs. 4.367, 
P = 0.615, Fig. 4J). Therefore, this study found no signifi-
cant differences in Blautia genus, Lactobacillus genus, 
and Ruminococcus genus in patients with different BMI.

Expression of pro‑inflammatory cytokines in intestinal 
samples from mice gavaged by feces from colorectal 
cancer patients or healthy controls
To investigate the correlation between cytokines and gut 
microbiota, we found a relevant dataset in the GEO data-
base (GSE136682) and collected most of the cytokines 
which were reported related to COVID-19 [37–39]. 
Based on GSE136682 data, we found that IL-1β and 
IL-6 were increased in the intestinal tumor of mice after 
gavage administration by feces from colorectal cancer 
patients compared to their counterparts of mice fed by 
feces from healthy people (Additional file  1: Figure S1). 
Meanwhile, previous studies showed that patients with 
COVID-19 were in a pro-inflammatory status with high 
levels of IL-1β and other cytokines [40], and high levels 
of IL-6 and TNF-α were observed in COVID-19 patients 
requiring intensive-care-unit hospitalization [41]. Hence, 
we speculate that increased IL-1β and IL-6 may worsen 
the disease in colorectal cancer patients with COVID-19.

Metabolomics differences between colorectal cancer 
patients and healthy control group
Metabolomic data used in this study were obtained 
from 12 patients with colorectal cancer and 8 health 
control people in Xiangya Hospital. In addition to their 
health status, they were classified by sex and age. PLS-
DA analysis (Fig.  4A, C) showed significant differences 
in metabolites between the tumor group and the con-
trol group. Besides, 200 permutations were conducted 
to validate the fitting degree of this model. Two com-
ponents were selected for positive-ion metabonomic 
signatures (Fig.  4B, D), and the R2 value and Q2 value 
were 0.83 and -0.51 respectively. Two components were 
selected for negative-ion metabonomic signatures, and 
the R2 value and Q2 value were 0.91 and − 0.33, respec-
tively. According to the results, the model was stable 

Fig. 3  The relative abundance of Blautia, Lactobacillus, and Ruminococcus of colorectal neoplasm patients is divided by age, gender, and BMI. A 
The abundance of Blautia in patients divided by age was shown, and Blautia Genus has a higher abundance in older patients (p < 0.0001). B The 
abundance of Blautia was positively correlated with the age of patients (r = 0.1862, p < 0.0001). C The abundance of Lactobacillus in patients divided 
by age was shown. D The abundance of Ruminococcus in patients divided by age was shown. E The abundance of Blautia in patients divided by 
gender was shown. F The abundance of Lactobacillus in patients divided by gender was shown. G The abundance of Ruminococcus in patients 
divided by gender was shown, and Ruminococcus has a higher abundance in males (p < 0.05). H The abundance of Blautia in patients divided by 
BMI was shown. I The abundance of Lactobacillus in patients divided by BMI was shown. J The abundance of Ruminococcus in patients divided by 
BMI was shown. * p < 0.05, *** p < 0.001

(See figure on next page.)
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without over-fitting. The PLS-DA corroborated signifi-
cant metabolomics differences between the two groups.

As shown in Fig.  5E, a lot of metabolites increased 
in the cancer group including 3-Methyladenine, 
N-Hydroxy-1-aminonaphthalene, Demethylated 
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antipyrine, and so on. Amitenone Linoleamide, 
5-Hydroperoxyeicosatetraenoic acid, Linoleyl carnitine, 
Deoxycholic acid 3-glucuronide decreased in the can-
cer group. In addition, Amitenone correlated with the 
expression of a variety of materials such as Linoleamide, 

5-Hydroperoxyeicosatetraenoic acid, Linoleyl carnitine, 
and Deoxycholic acid 3-glucuronide (Fig.  4F). The dif-
ferentially expressed metabolites were mainly enriched 
in the following KEGG pathways: Linoleic acid metab-
olism, Phenylalanine metabolism, Primary bile acid 

Fig. 4  A PLS-DA score plot of the control and cancer patients of positive ions was shown based on LC–MS technology. B The permutation plot of 
positive ions (200 times, R2 = 0.83, Q2 =  − 0.51) was conducted and shown. C PLS-DA score plot of the control and cancer patients of negative ions 
was shown based on LC–MS technology. D The permutation plot of positive ions (200 times, R2 = 0.83, Q2 =  − 0.51) was conducted and shown. 
E The heat map exhibited the differently expressed substances detected in colorectal cancer patients. F The thermodynamic chart showed the 
expressions of several substances are correlated. Red blocks represent positive correlation, blue blocks represent the negative correlation. And the 
deeper the color, the stronger the correlation. Non-significant correlations were marked with crosses inside of the boxes
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biosynthesis, Fatty acid biosynthesis, and Purine metabo-
lism (Fig. 5A).

Metabolomics studies of colorectal cancer patients with 
different genders and different ages were conducted, and 
the materials such as Choline polyoxaleate (600) monori-
cinoleate LysoPC(22:0) LysoPC(18:1(9Z)) Araliacerebro-
side trans-hexadec-2-enoyl carnitine Linoleyl carnitine, 
and other metabolites decreased in male patients with 

colorectal cancer (Fig. 5B). These substances are mainly 
enriched in the metabolic pathways including Glycer-
ophospholipid metabolism Choline metabolism in cancer 
Glycine, and serine and threonine metabolism (Fig. 5C). 
Daidzein, Trigonelline, PC-M6, 5-hexyltetrahydro-
2-furanoctanoic acid, m-aminobenzoic acid, Pyrophaeo-
phorbide A, and all-trans-retinoic were more abundant 
in patients with colorectal cancer over 65 years old than 
colorectal cancer patients under 65  years old. (Fig.  6A). 
The differentially expressed metabolites were mainly 
enriched in the following KEGG pathways: Phenylalanine 
metabolism, Phenylalanine, tyrosine, and tryptophan 
biosynthesis, Nicotinate, and nicotinamide metabolism, 
Histidine metabolism, Aminoacyl-tRNA biosynthesis, 
Porphyrin and chlorophyII metabolism (Fig. 6B).

A

B

C

Fig. 5  A The differently expressed metabolic pathway between 
colorectal cancer group and healthy people. B Heatmap showed 
the differentially expressed substances between colorectal cancer 
patients of different sex. C The bubble plot exhibited the pathway 
enriched by the differentially expressed substances between 
colorectal cancer patients of different sex

A

B

Fig. 6  A Heatmap showed the differentially expressed substances 
between older patients and younger patients, and we set the cut-off 
point at 65. B The differently expressed metabolic pathway between 
colorectal cancer patients divided by 65 years old
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Discussion
In this study, we found that the gut microbiota data of 
patients with colorectal cancer and the healthy con-
trol group was significantly different, for instance, the 
abundance of Blautia, Ruminococcus in colorectal can-
cer patients was significantly increased. In addition, we 
found that the abundance of Blautia Genus was positively 
correlated with the age of patients, and the abundance of 
Ruminococcus Genus of male patients was higher than 
that of female patients. However, our study did not dis-
cover obvious differences as for the amount of Lactoba-
cillus genus, Ruminococcus genus, and Blautia Genus of 
colorectal cancer patients with different BMI.

To explore the possible mechanism of the impact of gut 
microbiota on the COVID-19, we collected 12 patients 
with colorectal cancer and 8 health control specimens, 
and we found a significant difference in metabolomics 
between patients with colorectal cancer and the health 
control specimen: 3-Methyladenine, N-hydroxy- 1-ami-
nonaphthalene Demethylated antipyrine and other 
metabolites were differentially expressed. And there 
is some correlation between the expression of these 
metabolites. In addition, we also found that the alteration 
of these metabolites may be related to the alteration of 
some metabolic pathways.

Gut microbiota comprises a wide range of microor-
ganisms that interact with host cells to regulate many 
physiological processes, such as energy harvest, metabo-
lism, and immune response [26]. Gut microbiota may 
also contribute to a variety of respiratory infectious dis-
eases, and this interaction effect was known as the gut-
lung axis [5, 42, 43]. Gou et al. [10] found that the Blautia 
genus, Lactobacillus genus, and Ruminococcus genus of 
Firmicutes in the gut microbiota of COVID-19 patients 
correlated with the expression of multiple inflamma-
tory molecules and that the operational taxonomic unit 
(OTU) composed of these three genera is associated with 
the severity of COVID-19. Therefore, it is of great signifi-
cance to study the differences between these bacteria in 
health control people and patients with colorectal cancer 
as a risk factor of COVID-19. In this study, it was found 
that Blautia and Ruminococcus had a higher abundance 
in colorectal cancer patients, indicating that colorectal 
cancer patients have a higher tendency to severe COVID-
19 infection. We found that Blautia genus had a higher 
concentration in older patients and females, which indi-
cated that these two populations infected with COVID-
19 have a higher likelihood of severe illness.

Previous studies have found that “cytokine storm”, 
excessive production of inflammatory cytokines, may be 
an important mechanism leading to an increase in the 
severity and mortality of COVID-19 patients [12]. In 
our work, IL-1β and IL-6 were increased in the intestinal 

tumors of mice after being fed by feces from colorectal 
cancer patients compared to counterparts fed by feces 
from healthy people. Previous studies also showed that 
Blautia and Ruminococcus were positively correlated 
with the expression of these two cytokines [8], and the 
pro-inflammatory status caused by the increase of IL-1β 
may cause the deterioration of patients with COVID-19.

Our study found significant differences in metabo-
lomic results between patients with colorectal cancer 
and healthy controls. In the samples of colorectal cancer 
patients, Dodecanoic acid, 3-methyladenine, and other 
substances increased, while Inosine and other substances 
decreased. These substances were enriched in Lin-
oleic acid (LA) metabolism, Phenylalanine metabolism, 
Fatty acid biosynthesis, Purine metabolism, and other 
pathways. Amitenone correlated with the differential 
expression of a variety of metabolites, and it might be 
important in the metabolism of gut microbiota, but its 
role in COVID-19 has not been reported before.

Using 2.85-angstrom cryo-electron microscopy, Chris-
tine et  al. found that the receptor-binding domains 
tightly bind the essential free fatty acid LA in three 
composite binding pockets [44]. LA binding stabilizes 
a locked COVID-19 spike conformation, resulting in 
reduced ACE2 interaction in  vitro. In human cells, LA 
supplementation synergizes with the COVID-19 drug 
remdesivir, suppressing SARS-CoV-2 replication. The 
addition of phenylalanine might affect COVID-19 mRNA 
cap-1 methyltransferase function [45]. The low purine 
diet (especially in patients with hyperuricemia) as adju-
vant nutritional therapy improves the immune system, 
weakens viral replication, and assists in the treatment of 
COVID-19. Therefore, changes in Linoleic acid metabo-
lism, Phenylalanine metabolism, and Purine metabolism 
pathways may lead to changes in the infection degree of 
COVID-19.

We also found that the metabolomic differences 
between male and female colorectal cancer patients were 
mainly concentrated in the metabolic pathways such as 
Glycerophospholipid metabolism, Glycine, serine, and 
threonine metabolism. Juanjuan Xu et  al [46] found 
that the pulmonary function of COVID-19 survivors is 
related to the Glycophospholipid metabolic pathway. 
Gut microbiota may affect the prognosis of COVID-
19 patients by affecting metabolic pathways such as the 
Glycophospholipid metabolic pathway. The metabolome 
differences between patients older than 65 years old and 
those younger than 65  years old are mainly reflected in 
Linoleic acid metabolism, Phenylalanine metabolism, 
and other pathways, which may also be the mechanism of 
gut microbiota playing a role in metabolism.

Although there are meaningful results of this research, 
there are also some limitations. First, We hypothesize 
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that differences in gut microbiota between CRC and 
non-tumor groups may also lead to differences in mor-
tality between them based on the previous studies, and 
we really discovered the differences in Blautia genus 
and Ruminococcus genus between CRC and non-tumor 
groups, but our hypothesis still needs further research 
to confirm. Our studies may provide directions for fol-
low-up studies. Secondly, we analyzed abundant public 
data  from GMrepo database, but the sample size differ-
ence between the healthy and patients with colorectal 
neoplasms in this dataset was too big. Although we used 
other datasets to validate our results, further studies are 
needed to confirm these discoveries.

This study indicated that the difference in the gut 
microbiota of colorectal cancer patients and healthy con-
trol people may lead to a worse prognosis in colorectal 
cancer patients with COVID-19. This study further illus-
trated the effect of gut microbiota in the severity and 
treatment of colorectal cancer and COVID-19, which 
might provide a new idea for the treatment of colorectal 
cancer patients with COVID-19. However, further stud-
ies are needed to validate the results of this study and to 
further explore the mechanism of the role of gut micro-
biota in COVID-19.

Conclusion
Previoius studies showed that Blautia genus, Lactoba-
cillus genus, and Ruminococcus genus of Firmicutes 
are correlated with the severity of COVID-1910. Based 
on the GMrepo database, We found that Blautia genus 
and Ruminococcus genus enrichment degress may be 
different between CRC patients and healthy controls, 
which may lead to a worse prognosis in colorectal can-
cer patients with COVID-19. In addition, We collected 
feces samples from 12 patients with colorectal cancer and 
8 healthy people in Xiangya hospital for metabolomic 
analysis to investigate the potential mechanisms. Further 
studies are needed to validate the results of this study and 
explore the mechanism of the role of gut microbiota in 
COVID-19.
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