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Abstract 

Microorganisms have been linked to a variety of critical human disease, thanks to advances in sequencing technology 
and microbiology. The growing recognition of human microbe–disease relationships provides crucial insights into the 
underlying disease process from the perspective of pathogens, which is extremely useful for pathogenesis research, 
early diagnosis, and precision medicine and therapy. Microbe-based analysis in terms of diseases and related drug dis-
covery can predict new connections/mechanisms and provide new concepts. These phenomena have been studied 
via various in-silico computational approaches. This review aims to elaborate on the computational works conducted 
on the microbe–disease and microbe–drug topics, discuss the computational model approaches used for predicting 
associations and provide comprehensive information on the related databases. Finally, we discussed potential pros-
pects and obstacles in this field of study, while also outlining some recommendations for further enhancing predic-
tive capabilities.

Keywords Microbiota, Microbiome, Microbe–disease prediction, Microbe–disease similarity, Similarity calculation 
method, Microbe–disease associations

Introduction
The gut microbiota is a collection of microorganisms 
that live in the mammalian gastrointestinal tract (GIT). 
This microbial population has a host-specific composi-
tion that changes with time and is susceptible to both 
exogenous and endogenous alterations [1]. Unlike the 
host genomic profile, the gut microbiome is a changeable 
environment that can be achieved with probiotics, prebi-
otics, nutrition, and community replacement techniques 

like fecal microbiota transplant [2]. The majority of these 
microbes live in the gastrointestinal tract, most abun-
dant in the distal portion of the intestine. They synthesize 
essential amino acids, vitamins, and non-digestible com-
ponents to aid in nutritional processes. Combined with 
host genetics, metabolic phenotypes can have a profound 
impact [3–7].

Environmentally, geography, diet, aging, the use of 
drugs and antibiotics, stress, and diseases can affect 
the gut microbiota [7–11]. A balance of microbiota is 
believed to protect the host body from physiological 
disorders. Based on a plethora of compelling evidence, 
there might be a correlation between the emergence 
of diseases and the changes in the composition and 
amount of microbiome in the body [12, 13]. Evidence 
suggests that changes in gut microbiota are linked to a 
variety of diseases and immune and metabolic dysfunc-
tions, including hypertension, heart attack, myocardial 
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infarction, stroke, coronary artery disease, diabetes, 
and chronic kidney disease [9, 14, 15]. Additionally, 
the human GIT microbiota, as a predictor of human 
health and the therapeutic response, can influence the 
reaction(s) of the body to a variety of treatments, from 
dietary and lifestyle modifications to drugs and surgical 
procedures [2]. It is deemed that the intestinal microbi-
ota interacts with almost all human cells and is consid-
ered a major factor in host metabolism and also a new 
source of therapy [16].

A beneficial commensal or symbiotic relationship 
between the human and the microbiota of the body is 
proved by the advances in sequencing technology and 
recent bioinformatics discoveries [17, 18]. Meanwhile, 
some researchers develop and apply computer tech-
niques to identify the effects of microbes on human 
disease. For instance, Coelho et al. have suggested a com-
putational technique that takes into account the interac-
tion between microbial and human proteins to anticipate 
the effect of microbial proteins on human biological pro-
cesses [19]. The Human Microbiome Project started in 
2007, is another well-known instance of a microbe pro-
ject [20]. Finding Microbe–Disease Associations (MDA) 
might be extremely beneficial in areas that deal with dis-
eases, such as medications and pathogenic genes [21]. 
The gut microbiota is now recognized as being responsi-
ble for adjusting many physiological functions of the host 
[25, 26]. Additionally, the identification of microbe–dis-
ease relationships offers several insights into the patho-
physiology of disease. Notable computational techniques 
have recently been developed to investigate the influ-
ence of microbiota on human disease, and medications 
[30–35]. In this article, we strived to fully inspect the 
computational methods for predicting microbial disease 
associations, which can be divided into six categories:

 I. Path-based methods: Path-based methods allow 
predictions in heterogeneous networks by calculat-
ing path-based scores between microbe nodes and 
disease nodes.

 II. Methods based on Random Walks: A walker 
walks in a transfer likelihood network made up of 
microbe and disease nodes at random. These strat-
egies look for a probable association by calculating 
the likelihood of a random walker completing a 
path that starts with a node on one side of the asso-
ciation and ends with a node on the other.

 III. Bipartite Local Models (BLMs): Such methods 
compute Microbe–disease association (MDA) 
forecast scores from two viewpoints of diseases 
and microbes. The collective prediction scores on 
both sides are used to determine the final predic-
tion ranking.

 IV. Matrix factorization approaches: an interaction 
matrix is factorized into two low-dimensional 
matrices, one representing disease features and the 
other representing microbe ones. The final pro-
jected matrix is the sum of two low-dimensional 
matrices.

 V. Machine learning-based: The machine learning-
based method uses fewer parameters that can save 
time and achieve strong performance.

 VI. Network-based methods: Network-based methods 
have used Graph Attention Network (GAT), MLP 
layers to predict new connections, automatic learn-
ing of a nonlinear function, and so on to predict 
new connections.

 VII. Other methods: Certain methods may not be 
sorted into the groups above, but they are grouped 
as "other methods."

Additionally, various drugs can alter the structure and 
composition of the gut microbiome and thus change its 
biological function, such as the ability to metabolize. 
On the other hand, metabolism and drug outcomes 
may be influenced by microbial metabolic processes 
and their metabolites. Understanding the mutual rela-
tionship between drugs and microbiomes, as well as 
how it affects drug clinical outcomes, paves the way for 
next-generation interventions to reduce disease com-
plications [22]. Little is known about the impact of the 
microbial gene pool on medications prescribed in vari-
ous areas of the human body, as well as the impact of 
microbiome modifications on drug destiny, behavior, 
toxicity, and therefore a human reaction to care [23]. 
Remarkably, recent research has shown a solid connec-
tion between the microbiota and the pharmacological 
effects of chemotherapy [24] and immunotherapy [25, 
26]. The microbial diversity in the body is intriguingly 
reduced, in large part due to the interaction of chemi-
cal drugs with the host immune system. As a result, the 
effect of such drug molecules might be decreased, and 
other consequences may occur too. The human micro-
biome, particularly the gut microbiome, improves the 
efficacy of chemo-drugs through digestion, enzyme 
degradation, ecological variations, and immunomodu-
latory. A recent study has taken advantage of the micro-
biome’s role in shaping the effectiveness and toxicity 
of these chemotherapy agents [27]. The relationship 
between gut microbes and the currently used non-
antibiotic drugs seems to be very complicated, in which 
drugs can affect the gut microbiome’s makeup, and the 
gut microbiome can also enzymatically alter the drugs 
[28]. The individual’s reaction to the medication may 
alter bioavailability, bioactivity, and/or toxicity, a phe-
nomenon known as" pharmaco-microbiome" [29–31]. 
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Variations in the human microbiome(i.e., the synthe-
sis of human-associated microbial species and their 
genomes) might impact medication disposition, behav-
ior, and toxicity, according to the concepts of pharmacy 
and toxico-microbiome [32].

The gut microbiota influences medication and ceno-
bitic metabolism in both overt and indirect ways, which 
may affect effectiveness and toxicity [33]. Advances in 
gut microbiota modeling and research will expand our 
understanding of their function in health and disease, 
allowing for the customization of current and prospec-
tive medicinal and prophylactic modalities [34]. Moreo-
ver, various human infectious diseases are caused by 
an imbalance in microbial communities [20, 35]. GIT 
microbes also play an important role as a therapeutic tar-
get in precision medicine and modulation of drug activity 
or toxicity [36], while their diversity and function can be 
altered by drugs [37].

Besides, with the increasing emergence of drug-
resistant microbes, it is necessary to identify microbial-
pharmacological associations in very large sizes [36]. 
For this purpose, several models have been proposed 
and designed to identify the association of medicinal 
microbes, including the Ensembling graph attention net-
works for predicting human microbe–drug association 
[38]. Based on the heterogeneous network embedding 
representation, the association mining method was used 
to detect microbe–drug interactions [39]. To compute 
potent associations between microbe and drug, Zou et al. 
developed a method based on the KATZ measure [40]. 
In another study, Long et  al. proposed a computational 
Method based on a novel Graph Convolutional Network 
(GCN) framework for predicting before-mentioned asso-
ciations [41]. These approaches can be summarized as 
follows:

• Neural Network (GCN): A neural network is a col-
lection of algorithms that attempts to understand 
underlying associations in a set of input data using a 
procedure that mimics how the human brain works.

• Assembling a graph with attention function: In vari-
ous graphs, each node (e.g., microbes, and drugs) 
can contain a variety of semantic knowledge. The 
attention function at the diagram level is used to effi-
ciently collect node embeds from input diagrams, 
merge information, and remove noise from various 
diagrams.

• Heterogeneous network embedding representation: 
In this method, by combining Metapath2Vec with 
the recommendation of a two-part network, a heter-
ogeneous embedded network demonstration frame-
work is used to predict the association of microbes 
and drugs. To improve the prediction accuracy, the 

proposed bias bipartite network Embedding (BiNE) 
forecasting algorithm has been created and used.

• KATZ measurements: In this method, most of the 
heterogeneous network of medicinal microbes is 
created based on two similar networks and known 
connections of medicinal microbes. Based on these 
networks and KATZ measures, the process of pre-
dicting the potential relationships between drugs and 
microbes was performed. The human gut microbi-
ota, as a predictor of human health and therapeutic 
response, is shown in Fig. 1.

Prediction of microbiome association with drug 
and disease
In latest years, with the speedy development of strate-
gies in bioinformatics and life science, a massive quantity 
of biomedical information has been amassed, based on 
which researchers have evolved numerous computational 
procedures to discover potential associations between 
human microbes, drugs and diseases. This article offers 
a thorough analysis of current developments in identi-
fying possible relationships among microbes, drugs and 
diseases using biological data and computational models.

Drug–microbe association
It should be noted that drugs can change the species diver-
sity and function of microbial communities [36], and the 
number of drug-resistant bacteria is growing. In this line, 

Fig. 1 The human gut microbiota is a predictor of human health 
and therapeutic response. The gut microbiota influences a person’s 
reaction to a variety of treatments, from dietary and lifestyle 
modifications to drugs and surgical procedures
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microorganisms play a vital role in lowering the medica-
tions’ adverse reactions. Collectively, there is an urgent 
need to recognize the possible pharmaceutical-microbial 
associations [37]. In the rest of this section, the studies 
related to the prediction of microbe–drug relationships in 
the literature were reviewed.

Graph convolutional network (GCN)
Long, Y. et  al. used various sources of biomedical infor-
mation and created several networks (diagrams) for 
microbes and drugs. Then, they developed a novel ensem-
ble framework of graph attention networks with a hierar-
chical attention mechanism for microbe–drug association 
prediction from the constructed multiple microbe–drug 
graphs, denoted as Ensembling graph attention networks 
for human microbe–drug association prediction (EGAT-
MDA). Specifically, for each input graph, a graph convo-
lution network is designed according to the node surface 
to learn to embed the nodes (e.g., microbes and drugs). 
To effectively integrate node embeds from multiple input 
diagrams, graph-level attention has been implemented to 
learn the importance of different input diagrams [38].

Graph attention networks
The proposed Graph Convolutional Network (GCN) based 
framework for predicting human Microbe–drug Associa-
tions (MDA), named GCNMDA is a convolutional neural 
network-based model for predicting drug-microbe interac-
tions. Initially, a heterogeneous network is built to combine 
microbial gene information, drug chemical information, 
and microbe–drug interactions. Later, an RWR-based 
preprocessing mechanism is designed to extract effective 
properties. Finally, a CRF layer is generated in the GCN to 
enhance the learning of node representation for drugs and 
microbes so that similar nodes have similar representa-
tions. A layer of the CRF attention mechanism is designed 
to accurately collect representations from neighbors [42].

Heterogeneous network embedding representation
Adjacency matrix In this approach, the information 
obtained from the confirmed experimental results related 
to human microbe–disease (microbe–drug) is extracted 
from the corresponding databases for microbe–disease 
(microbe–drug) associations. Then, an adjacency matrix 
A ∈  Rnd*nm is created (nd and nm show the number of dis-
eases (drugs) and the number of microbes, respectively) 
as follows:

Similarity calculation and heterogeneous network Var-
ious computational methods, that have been designed 

aij =

{

1 if association between disease(drug) di and microbemi
0, else

and proposed to predict microbe–disease (microbe–
drug) data, are mentioned in the previous sections. The 
approaches can be classified into two groups: (i) those 
that use known disease-microbe relationships to calcu-
late microbe–disease similarity, and (ii) those that use 
extra data.

In a method for determining similarity based on 
microbe–disease associations, the adjacent matrix 
A ∈  Rnd×nm is used as the input, and the similarity 
matrix between microbial  Sm ∈  Rnm×nm and the simi-
larity between  Sd ∈  Rnd×nd disease is used as the out-
put. The similarity calculation methods are the same 
for diseases-microbes (drugs) and the methods include 
Gaussian interaction profile kernel similarity [43]. The 
following approaches can be implemented:

Cosine similarity: In Euclidean space, the cosine 
similarity measures the cosine of the angle between 
two interaction profiles. Having capitalized on this 
approach, a few studies were able to obtain the microbe 
and disease similarity matrix [21, 44].

Spearman correlation similarity: Spearman corre-
lation coefficients as similarity ratings are calculated 
using sequences of positions or time points of pairwise 
microbes [45].

In a recent study, Wang et al. advanced a gene-based 
disease association approach based on neighbor-
dependent similarity estimation. In most studies, after 
creating similar networks for diseases and microbes, 
researchers have used known microbe–disease asso-
ciations through databases to construct the proposed 
models [46].

Two researchers have proposed a biased two-way 
network algorithm to predict the most likely microbe–
drug relationships and increase the accuracy of the 
proposed model. Heterogeneous Network Embedding 
Representation framework for Microbe Drug Asso-
ciation (HNERMDA) is based on the representation 
of an embedded heterogeneous network via metapath-
2vec and the recommendation of a two-part network. 
To build heterogeneous networks, they capitalized 
on interactions between microbes and drugs, such as 
drug-microbe interactions [39].

KATZ measurements
Using known drug-microbe associations, a microbe 
similarity network is constructed by calculating 
the GIP core similarity of microbes. Due to the two 
similar networks and similar connections of known 
medicinal microbes, a heterogeneous network of 
medicinal microbes is created. An HMDAKATZ model 
is designed to predict drug–microbe communication 
[40].
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Multi‑modal variational graph embedding
A multi-modal variational graph embedding model for 
predicting microbe–drug associations (Graph2MDA) 
is a new technology that uses a graph autoencoder to 
predict microbe–drug interactions variational graph 
auto encoder (VGAE). Created multi-modal attributed 
graphs based on molecular structures, microbe genetic 
sequences, and function annotations of bacteria and 
pharmaceuticals. A deep neural network classifier was 
used to predict microbe–drug relationships [47]. Fig-
ure 2 represents the architecture of predicting microbe–
drug relationships using a convolutional neural network 
model.

Recruited datasets and approaches for prediction 
of microbe–drug associations
Previous studies on the microbe–drug relationship have 
used a variety of data.

Table  1 lists the data used to predict microbe–drug 
based on the information we reviewed.

In addition, different approaches for predicting the 
relationship between microbe–drug are summarized in 
Table 2.

Comparison and application of models to each other
Since predicting the interactions between microbes 
and drugs is a new field of study, few computational 
approaches have been proposed for this critical task. The 
various approaches for link prediction problems in the 
field of bioinformatics and the existing techniques for 
microbe–drug interactions are compared [38, 48–50]. 
The Graph2MDA model had the highest AUC value, 
followed by LAGCN, while NTSHMDA had the low-
est AUC value. Deep learning-based methods frequently 
outperform more traditional machine learning-based 
ones. The more effective method provides the follow-
ing benefit over other models: Using multimodal feature 
graphs based on ontological information, multiple simi-
larities between microbes and drugs, and their known 
relationships, methods may fully use many different sorts 

Fig. 2 The architecture of predicting microbe–drug relationships using a convolutional neural network model
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https://drugvirus.info/tech_doc/
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of features and links. Additionally, by incorporating the 
topological structure into multimodal feature networks, 
the impact of the cold start problem is lessened. Poten-
tially mitigate the effect of similar noises [38].

Microbe–disease association
According to some new research [51], microbes are being 
increasingly linked to human pathogens. Disease-related 
microbe research aims to understand disease processes 
and the creation of novel diagnostic and therapeutic 
methods. Many theoretical models for predicting dis-
ease-causing microbes have been suggested. In the con-
tinuation of this section, we review the studies related to 
the prediction of microbe disease relationships that exist 
in the literature.

Path‑based methods
Weighted meta-graph-based model on heterogeneous 
information network (WMGHMDA) have been pre-
sented to predict the relationship between diseases and 
microbes. Path-based approaches examine indirect path-
ways across networks, which often evaluate the weight of 
a prospective route as the score of unknown relation. The 
Meta-Graph search algorithm is run on the heterogene-
ous network to count the meta-weight patterns of each 
disease-microbe pair. Summing the contribution values 
of the related weighted Meta graphs yields the likelihood 
score for each pair of disease-Microbe [52].

BWNMHMDA (Bidirectional Weighted Network 
model Human Microbe–disease Association Predic-
tion) is a new method for predicting the microbe–dis-
ease association based on the Bidirectional Weight 
Network. The main idea of this model is to produce a 

bidirectional disease-microbe communication network 
that converts them into matrices to compute the prob-
ability of correlation. It can be achieved by assigning 
weight to nodes and edges in the integrated network 
using the similarity of the Gaussian interaction profile 
kernel [53].

The PBHMDA (Path-Based Human Microbe–disease 
Association Prediction) proposes a new path-based 
prediction model for inferring potential microbe–dis-
ease associations. It is based on the main similarity of 
Gaussian interaction profiles for diseases and Gaussian 
interactions between microbes. A special depth-first 
search algorithm was designed in the model to ensure 
no duplicate nodes were found [54].

The KATZ measurement model was proposed to 
predict the Human Microbe–disease Association 
(KATZHMDA) Researchers combined the number of 
walks and their distances as an appropriate measure 
index for measuring the possible interaction likelihood 
between microbes and diseases. It is based on the graph 
constructed by the established microbe–disease associ-
ation network, microbe similarity network, and disease 
similarity network [48].

By integrating several data sources and path-based 
HeteSim scores, Fan et al. developed a new method for 
predicting disease-microbe Multiple Data sources and 
Path-based HeteSim scores for Human Microbe–dis-
ease Associations (MDPH_HMDA) communication. 
The similarity of microbes was calculated by combining 
microbial functional scores and Gaussian core profile 
similarity. The similarity of the disease pairs was cal-
culated using the similarity scores based on the symp-
toms. The HeteSim method has been used to obtain 
the relevance score and normalized measurement from 
each disease-microbe pair [55].

Table 2 Different methods to predict microbe–drug association

Category Method Description Refs.

Graph Convolutional Network (GCN) GCNMDA A conditional random context (CRF) and a CRF layer focus function in the 
hidden GCN layer are used to ensure that the same nodes have the same 
representations

[61]

Ensembling graph attention EGATMDA To learn embedded nodes for microbes and drugs, a convolutional graph 
network is built at the node level for each input diagram

[55]

Heterogeneous network embedding representa-
tion

HNERMDA Metapath2vec has developed a heterogeneous network display learning 
approach for learning low-embedded microbe and drug displays in this 
context

[56]

Multi-modal variational graph embedding Graph2MDA A graph with variations A deep neural network classifier was used to predict 
microbe–drug relationships after an auto encoder was trained to learn the 
informative and interpretable latent representations of each node and the 
whole graph

[67]

Based on KATZ measurements KATZ By bringing the chemical structures together and the similarity of the 
nucleus, they have created the Gaussian interaction profile of the drug 
unification network

[57]
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Random walk methods
For iterative walking, random walk methods use a graph-
based transfer likelihood matrix. Niu et  al. made a 
higher-order hyper graph sample to accurately determine 
the intrinsic association between microbes and human 
diseases. They develop a model based on the random 
walk on hypergraph for microbe–disease association pre-
diction (RWHMDA). They ranked all-volunteer microbes 
for every perused human disease. Hypergraphs can effi-
ciently mitigate data loss occurring in the normal graph 
methodology. For the generated hypergraph, the core 
similarity of the Gaussian interaction profile, random 
walk, and integration of known microbe–disease associa-
tions from the HMDAD database was performed [56].

A heterogeneous network by combining the Gaussian 
interaction profile microbial similarity network and the 
Gaussian interaction profile disease similarity network 
has been produced by known networks of microbe–
disease associations. Then, a novel way for predicting 
the future microbial and disease relationships based on 
extensive optimized random walking was announced by 
introducing network topological similarity (NTSHMDA) 
[49].

Zou et al. have combined the microbial similarity net-
work and the disease similarity network to generate a het-
erogeneous network. A two-random walk algorithm was 
implemented on the network generated by the Gaussian 
interaction profile’s similarity and logistic transforma-
tion. A novel computational model to predict potential 
microbe–disease associations by bi random walk on the 
heterogeneous network. Developed a new computational 
model for predicting potential human microbe–disease 
associations by bi random walk in heterogeneous net-
work (BiRWHMDA) [57].

Zhang et  al. proposed the bi-direction similarity inte-
gration label propagation (BDSILP) method for predict-
ing microbe–disease associations. Using the Mesh, the 
semantic similarity of the disease and the functional 
similarity of the microbes were calculated. With the help 
of integrated disease similarity and integrated microbial 
similarity, they have produced two graphs. And BDSILP 
does the label propagation on the graphs to score the 
pairs of disease-microbe. BDSILP accepts the weighted 
mean of their scores as final predictions [58].

The symptom-based likeness is calculated by the con-
currence of diseases and the term symptoms. After 
calculating the similarity of the core of the Gaussian 
interaction profile of microbes based on known microbial 
disease associations, the similarity with the logistic func-
tion was obtained. Using the Similarity Network Fusion 
(SNF) method with similarity based on symptoms and 
the similarity of the core, the Gaussian interaction profile 
was calculated according to the known microbe–disease 

associations of the disease network. The two networks 
created for microbes and disease have been combined by 
well-known microbe–disease associations and used by 
BRWMDA (Bi-random walk microbe–disease associa-
tions) to predict potential new microbe–disease relation-
ships through random walking with different stages in 
microbial and disease networks [59].

After extracting information about the disease and 
germs, microbial networks were built using Spearman, 
and the disease network was generated based on the 
symptoms. Then, by combining the networks formed, a 
heterogeneous network of disease microbes is formed. 
Shen et  al. developed the random walk with a restart 
algorithm for the heterogeneous network, using the goal 
disease and corresponding microbes as seed nodes. They 
employed this algorithm to reveal the latent relationship 
between diseases and microbes [60].

A team of researchers has proposed a new model 
of extended random walking with restart optimized 
by Particle Swarm Optimization (PRWHMDA) based 
on human microbe–disease associations. Wu et  al. 
used cosine to calculate the similarity of diseases and 
microbes. Then, by combining networks, they formed a 
heterogeneous interconnected network. They introduced 
the RWR method to obtain strong communications [44].

Wang et  al. have proposed a novel computational 
model based on the bidirectional label propagation to 
predict potential human microbe–disease associations 
(NBLPIHMDA). The Gaussian interaction profile ker-
nel similarity was applied to measure the disease simi-
larity matrix along with the microbe similarity matrix. 
The edge weights of nodes in these two networks were 
determined. Bidirectional mark dissemination was used 
to achieve the association score matrix between diseases 
and microbes [61].

Using known connections from microbial network 
databases, disease networks and microbe–disease net-
works were created. A heterogeneous network was con-
structed using known microbe–disease associations from 
the database, the microbial network, and the disease net-
work. Wang et al. then predicted novel microbe–disease 
associations by a new method called the double ended 
restart random walk human microbe–disease association 
model (DRWHMDA) implemented on the interconnec-
tion network [62].

Bipartite local models
Fundamentally, the bipartite local models work indepen-
dently on both sides of a microbe–disease pair and can 
be combined to provide a conclusive prediction outcome. 
These approaches are capable of making independent 
observations on both the microbe and the disease fronts. 
The final scoring matrix is based on the combination of 
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the probability scores related to user-based and case-
based collaborative filtering [63].

Zou et  al. proposed a model using a combination of 
a neighborhood-based prediction model and a graph-
based recommendation model for human microbe–dis-
ease association (called NGRHMDA). The graph-based 
prediction model presents a two-step diffusion approach 
on the microbe–disease bipartite graph. Two new inte-
grated adjacent matrices have been developed based on 
the similarity of symptom-based diseases and on the sim-
ilarity of Gaussian-based microbes to consider microbial 
and disease similarities [64].

The core similarity of the Gaussian interaction profile 
for germs and disease was extracted from the microbe–
disease linkage network. Then, constructing and mini-
mizing the cost function for optimal classifiers in microbe 
and disease space turned it into an integrated classifica-
tion. A semi-supervised computational model_Laplacian 
Regularized Least Squares for Human Microbe–Disease 
Association (called LRLSHMDA) was proposed by Wang 
et al. to predict disease-microbe relationships [65]. Based 
on known microbe–disease communication networks, a 
heterogeneous network was created from the HMDAD 
database for the main similarity of disease Gaussian 
interaction profiles and microbe Gaussian interaction 
profiles. Then, Bao et  al. planned the Network Consist-
ency Projection for Human Microbe–disease Association 
prediction model (called NCPHMDA) to discover poten-
tial disease-microbe associations [66]. The KATZBNRA 
model, like the KATZHMDA, was designed by Li et  al. 
using the KATZ criterion and the core similarity of the 
Gaussian interaction profile for diseases and microbes 
based on the known associations. In addition, they uti-
lized a bipartite (two-way) Network Recommendation 
(BNR) algorithm to increase the prediction accuracy 
more than KATZHMDA [67].

Matrix factorization methods
The theory behind matrix factorization is that the input 
matrix decomposes into two low-dimensional matrices 
and the product of the two low-dimensional matrices 
approximates the input matrix [68, 69]. Wu et al. discov-
ered disease characteristics by combining two similarities 
based on the Gaussian kernel and one based on symp-
toms. The microbial properties have also been calculated 
using the similarity of the Gaussian kernel. They pre-
sented a computational model using matrix completion 
to predict the association of the human microbe–disease 
profile (called MHMDA) [70]. Chen et  al. introduced 
a method for predicting microbe–disease associations 
based on the Kernelized Bayesian Matrix Factorization 
(KBMF), which is dependent on the Gaussian interac-
tion profile kernel similarity for microbes and diseases 

[71].To compute the microbial similarity and similarity 
of the disease, Liu et al. used the similarity of the core of 
the Gaussian interaction profile and applied logical func-
tions to adjust the similarity of the disease. Based on the 
known microbe–disease associations, they suggested 
a model for predicting microbial disease associations 
using the regular non-negative matrix factorization chart 
(NMFMDA) [72].

By merging the known disease-microbe associations 
and the similarity of the core of the Gaussian interaction 
profile, Shen and his colleagues offered a Collaborative 
Matrix Factorization for Human Microbe–disease Asso-
ciation Prediction (CMFHMDA) model [73].

For the prediction of human microbe–disease asso-
ciations, a novel predictive model of graph regularized 
non-negative matrix factorization (called GRNMFH-
MDA) was developed by He et  al. Microbe and disease 
similarity were initially calculated using symptom-based 
disease similarity and Gaussian interaction profile ker-
nel similarity for microbes and diseases, respectively. 
To prevent a negative effect on prediction results, a pre-
processing phase was used in which unknown microbe–
disease pairs were given associated probability scores. 
Finally, a graph-regularized non-negative matrix factori-
zation method was employed to concurrently determine 
the possible correlations with all diseases [74]. Qu et al. 
introduced a statistical model of matrix decomposition 
and label propagation for the Human Microbe–disease 
Association prediction (so-called MDLPHMDA) by inte-
grating proven microbe–disease associations obtained 
from the HMDAD database, disease symptom similar-
ity, and Gaussian interaction profile kernel similarity for 
microbes and diseases. Using the spare learning method 
(SLM) on the original association details derived from 
HMDAD, a new adjacency matrix of microbe–disease 
associations was developed, and possible microbe–dis-
ease associations were further predicted using the label 
propagation algorithm (LPA) [75]. A Deep Matrix Factor-
ization Prediction (DMFMDA) model has been proposed 
by Liu et al. to predict the associations between microbes 
and diseases that do not require microbial and disease-
like networks and is based on deep neural networks, 
which combine the linear modeling advantages of matrix 
factorization with the non-linear modeling advantages of 
a multi-layer perceptron [76].

Network based methods
Graph attention networks Long et  al. present a new 
graph-attention network-based model for microbe–
disease association prediction (called GATMDA) in a 
bipartite network, combining inductive matrix comple-
tion (IMC). Researchers used functional similarities of 
microbes, functional similarities of diseases, and Gaussian 
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kernel similarities to obtain comprehensive specifications 
for microbes and diseases. Graphic Attention Networks 
(GAT) then introduced a GAT criterion for learning to 
display nodes using talking heads, which helps maintain 
a more informative display model [77].

Liu et al. proposed a multi-component Graph Attention 
Network based system to predict microbe -disease asso-
ciation (MGATMDA). By using a node-level attention 
mechanism, the decomposer first decomposes the edges 
in a bipartite network to discover the latent components. 
The combiner then automatically reassembles these hid-
den parts to provide a coherent embedding for compo-
nent-level attention prediction. Finally, a fully linked 
network is employed to forecast known and unknown 
connections between bacteria and diseases [78].

Models based on neural networks Using the similarity of 
microbial classification, the similarity of microbial inter-
action characteristics and disease interaction, semantic 
similarities and disease symptoms, and known disease 
and microbial associations, Ma et al. have developed a new 
method (NinimHMDA) based on neural integration of 
neighborhood information in a multiplex heterogeneous 
network (MHEN)for different types of human microbe–
disease association prediction [79]. Li et  al. proposed a 
new back-propagation neural network model to predict 
microbial-disease association (BPNNHMDA). The model 
input is a matrix of known microbe–disease associations, 
and its output is a matrix of potential microbe–disease 
association probabilities. An activation function is built 
based on the hyperbolic tangent function to activate the 
hidden and output layers. The Gaussian interaction profile 
core for microbes has been employed to improve binding 
weights and increase training speed [80].

Network consistency projection and multi‑data integra‑
tion
Then Fan et al. combined the matrix created for microbes 
and diseases with the linear network integration method. 
Get an integrated similarity matrix for diseases and 
microbes, and by integrating this matrix, network cohe-
sion prediction was created. Disease-microbe asso-
ciations were detected by predicting network cohesion 
and analyzing privileges extracted from them. Human 
Microbe–Disease Associations Prediction (HMDA-Pred) 
is a network-based computational method that connects 
multiple similarity networks to an integrated linear net-
work method and predicts the association of disease-
related microbes based on the Network Consistency 
Projection (NCP) algorithm [81].

Link propagation based on node information
PENG et  al. have proposed a computational model of 
node information-based link Propagation for human 
microbe–disease association prediction (LPHMDA) to 
prioritize disease-associated microbes. Using well-known 
associations between disease-causing microbes and simi-
larities between them, the Gaussian interaction profile 
of the matrix has created a likeness for microbes. They 
have formed a disease similarity matrix by combining the 
symptoms of the disease [82].

Machine learning‑based
Xu et  al. proposed a new computational method based 
on the Kronecker regularized least squares (MDAKRLS) 
method, which is a machine learning approach, to iden-
tify potential associations of microbe–disease communi-
cation. To measure the microbial similarity of diseases, 
they introduced the similarity of the Hamming interac-
tion characteristics. To construct two types of Kronecker 
similarities between pairs of microbes. Based on the well-
known associations, they have calculated the similarity 
of Kronecker and the similarity of Hamming to disease-
microbe pairs. To obtain prediction scores, Kronecker 
has designed at least four regular squares with different 
Kronecker similarities. They attained the ultimate fore-
cast outcome by integrating the contributions of dis-
tinct similarities [83]. The architecture of predicting the 
microbe–disease relationship is shown in Fig. 3.

Other methods
There are some methods in the literature that do not 
fit into any of the above-mentioned groups. As a result, 
these approaches are discussed in this section.

The microbe similarity was calculated from the Gauss-
ian Interaction Profile (GIP) kernel similarity, which is 
based on the well-known microbe–disease associations. 
Disease similarity was calculated using the mean of GIP 
similarity, symptom-based similarity, and functional sim-
ilarity of the disease. The matrix completion method was 
used by the Singular Value Threshold (SVT algorithm) to 
compute the scores of unknown communication between 
disease-causing microbes. Finally, a low-rank matrix 
completion(called the MCHMDA) model was proposed 
[84]. Shi et  al. suggest a new predictive method based 
on the Binary Matrix Completion (called BMCMDA) to 
forecast possible microbe-noninfectious disease associa-
tions (MDAs) by grouping a series of microbe–disease 
associations into a binary Microbe–disease association 
matrix. The suggested method suggests that the observed 
incomplete microbe–disease association matrix is the 



Page 11 of 19Shokri Garjan et al. Gut Pathogens           (2023) 15:10  

sum of a latent parameterizing matrix and a noise matrix. 
It also provides a binomial model for sharing observa-
tions that occur independently of the microbial-disease 
association matrix [85].

The adaptive boosting for human microbe–disease asso-
ciation prediction (ABHMDA) was developed to explore 
the relationship between diseases and microbes. Due 
to the lack of sufficient information, the combination of 
microbial similarity of the GIP kernel and the similarity of 
symptomatic disease has been considered a feature of the 

experimental sample. Unknown associations have been 
used as negative examples as well as positive examples to 
maintain the balance between the samples during the deci-
sion tree training [86]. Lei et al. have proposed a model of 
microbial disease association with learning graph repre-
sentations and a modified scoring mechanism on the het-
erogeneous network (called LGRSH). A heterogeneous 
network was shaped by combining microbial similarity net-
works, disease similarity networks, and known microbe–
disease associations[87].

Fig. 3 The overall architecture of predicting microbe–disease relationship
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Recruited datasets and approaches for prediction 
of microbe–disease associations
Previous studies on the microbial-disease relationship 
have used a variety of data sources. Table 3 summarises 
the recruited datasets to predict microbial disease based 
on the information we reviewed.

In addition, different approaches for predicting the 
relationship between microbes and disease are summa-
rized in Table 4.

Advantages and disadvantages
The KATZ measure might rebuild probable links con-
currently in a vast network, but the computation of GIP 
kernel similarity will always lead to a bias towards those 
known relationships. Although the label propagation and 
random walk algorithms are effective and simple to use, 
the majority of prediction techniques built on them tend 
to have less detail. However, when more data is added to 
the network, training the embeddings will become more 
challenging. The weighted network-based and heteSim-
based methods are excellent at capturing potential subtle 
semantic associations, but they cannot predict a microbe 
(drug, disease) in the absence of any known associa-
tions.  The methods based on matrix factorization can 
mine deeper potential connections. Matrix factorization 
has a relatively low spatial complexity because it saves 
storage space, but selecting the optimal parameters is 
more challenging. GCN improves the applicability of 
translation invariance to non-matrix-structured data but 
it has poor flexibility and scalability. GAT can effectively 
enhance the aggregation effect of graph neural networks, 
but it is difficult to aggregate higher-order neighbors. The 
pooling layer will lose a lot of valuable information and 
ignore the correlation between the local and the whole.

Challenges and prospects
Based on the existing studies, some valuable sugges-
tions are provided for further improving predictive 
performances.

Integrating multiple types of data for a single task
In this review, we briefly summarized the advanced and 
widely used dataset of computational methods related 
to the problems of microbe–disease and microbe–drug 
prediction, respectively. To improve prediction perfor-
mance, the most basic idea is to combine all of these 
commonly represented databases as a whole to predict 
any single problem, because they are all closely related In 
addition, other types of datasets were also introduced, for 
example, chemical structure-based and phenotype-based 
data widely used in predictions [88–90], symptom-based 
disease similarity, and disease semantic similarity in 

predictions [48, 55]. Certainly, it is a challenge to improve 
the performance of the prediction model to rationally 
integrate different types of bioinformatics data to target 
a prediction task.

Introducing new mechanisms
The majority of currently available computational meth-
ods improved their performance by enriching more 
entity similarities than the previous algorithm. In addi-
tion to this strategy, many other approaches, such as het-
erogeneous graph neural network (GCN) and attention 
mechanisms [91–93], also work for this problem. For 
example, the attention mechanism can learn the impor-
tance of different neighboring nodes and the importance 
of different node (information) types to a current node. 
Many GNN models, such as the Spatial Convolution con-
cept [94], can be introduced in link prediction problems. 
Moreover, most of the existing computational methods 
are supervised. The limited known associations’ dataset is 
used as both training and testing sets, which will signifi-
cantly hinder the utility and performance of the predic-
tion model.

Benchmark evaluation
LOOCV and K-fold CV have been widely used as 
benchmark evaluation frameworks for link predictions. 
AUROC and ROC plots provide an overview of a pre-
dictor’s performance and are commonly used to assess 
the prediction results. The computational approaches 
developed for the prediction problems of microbe-borne 
diseases and drugs always use strongly imbalanced data-
sets. The ROC plots could be misleading when applied in 
imbalanced prediction scenarios. [95].

Handling negative samples
The loss of negative samples significantly affects the pre-
diction performance of the proposed model, and it is 
crucial to collect negative samples from biomedical data-
bases and literature. To our knowledge, no actual nega-
tive samples have been collected and utilized in these 
predictive tasks presented in this survey. Developing 
computational methods to generate high-quality negative 
samples is an alternative to solving this problem [96].

Available microbiome databases
To the best of our knowledge, three databases have been 
developed on the subject of microbe–disease interaction, 
including HMDAD [21], Peryton [97], and Disbiome 
[98]. Several databases for empirically proven microbe–
drug relationships are freely available in the field, such as 
MDAD [99], abiofilm [100], and Drug Virus.

MDAD (http:// cheng roup. cumt. edu. cn/ MDAD) gath-
ers 5,055 entries containing 1,388 drugs, 180 microbes, 

http://chengroup.cumt.edu.cn/MDAD
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and 824 various strains (not including the microbes with-
out defined strains) related to 993 references. All the ref-
erences were from the 1970s to 2018. We can get all of 
the codes that correlate here (https:// github. com/ Sun- 
Yazhou/ MDAD).

The HMDAD (http:// www. cuilab. cn/ hmdad) is a 
database that compiles and organizes data on human 
microbe–disease associations from microbiota inves-
tigations. The database-integrated 39 diseases and 292 
microbes among the 483 disease-microbe entries.

Peryton (https:// diana lab.e- ce. uth. gr/ peryt on/) is a new 
database and resource containing empirically supported 
microbial disease associations. It hosts more than 7900 
inputs related to 43 diseases and 1396 microorganisms.

Disbiome (https:// disbi ome. ugent. be/ home/): Created 
in 2018, is a more comprehensive database that is con-
stantly updated every three months. As of December 
2019, the Disbiome database includes 322 diseases, 1,470 
microbiome organisms, and 9,102 experiments published 
in 1,018 scholarly articles.

The ‘a Biofilm’ (http:// bioin fo. imtech. res. in/ manojk/ 
abiofi lm/): There are three sub-categories in this category, 
including data visualization, a database, and a predic-
tion module. There are 5027 interactions between 1720 
medications and 140 microorganisms in the database of 
anti-biofilm compounds, which includes gram-negative, 
gram-positive, and fungal microorganisms. Most stud-
ies from 1988 to 2017 reported experimental anti-biofilm 
agents against various microorganisms.

Drug Virus (https:// drugv irus. info/ tech_ doc/) lists the 
activities and stages of development of 118 drugs that 
target 83 human viruses. The database allows users to 
explore virus-BSAA (Broad-spectrum antiviral agents) 
interactions in real time. DrugVirus.info is a free tool that 
includes a feedback form on its website. The website will 
be updated upon request or if a new save-in-man BSAA 
is discovered or a novel activity of an existing BSAA is 
discovered.

Available data based on similarity calculation
This section first discusses the computational method for 
germ-disease similarities (microbe–drug). It then lists 
databases and web servers that provide more information 
about the various diseases, drugs, and microbial compo-
nents used there.

Based on disease similarity
Disease semantic similarity: Medical records of a particu-
lar disease are presented hierarchically in the National 
Library of Medicine (Mesh). Therefore, to measure the 
significance of a disease pair, we can use the overlap 
between the descriptors of the parents. Using both DAGs 

(directed acyclic graphs), the severity of the disease can 
be computed [101, 102].

• Disease symptom similarity: The similarities of symp-
tomatic diseases based on HSDN were collected by 
Wheeler et al. [103]. With 849,103 PubMed records, 
they constructed 147,978 connections between 322 
symptoms and 4219 diseases. Based on this data, 
they derived the similarities based on the symptoms 
of common diseases from HMDAD [104].

• Gene-based disease data: DisGeNET is the largest 
database on human gene-Disease Association (GDA) 
and disease types that combines all data in expert-
curated repositories, GWAS catalogs, animal models, 
and scientific articles [105]. MEDLINE is the pri-
mary bibliographic database at the National Library 
of Medicine that holds the number of GDAs [106]. 
Bravo et al. used HMDAD and GDA databases to cal-
culate the similarity of the recorded diseases.

• Gene interactions: The HumanNet v2.0 database 
(https:// www. inetb io. org/ human net/ downl oad. php) 
is now available for efficiently accessing gene interac-
tions, with each interaction having a log-likelihood 
score (LLS) that assesses the likelihood of a practical 
linkage between genes [107].

Based on microbe similarity
Microbe–microbe interactions: The MIND database 
curates the microbe-microbe interaction network data 
(http:// www. micro bialn et. org/ mind_ home. html/) 
Obtained[39].

• Microbe data based on protein families: The STRING 
database (https:// string- db. org) includes protein–
protein interactions and protein-related information 
from a variety of sources. The resource consists of 
the interactions obtained from computer prediction, 
information transmission across species, and interac-
tions gathered from other (primary) databases. [52]. 
The purpose of this database is to achieve a global 
network of direct and indirect interactions. Collect-
ing, integrating, scoring, and interacting protein-
to-protein information, and completing these with 
computational predictions. Utilizing the proposed 
method, Kamneva calculated the functional similar-
ity of the microbes [108, 109].

• Microbe taxonomic similarity: It contains more than 
160,000 species with molecular data in the NCBI 
database, along with phylogenetic names and line-
ages and if two microbes have a common progenitor 

https://github.com/Sun-Yazhou/MDAD
https://github.com/Sun-Yazhou/MDAD
http://www.cuilab.cn/hmdad
https://dianalab.e-ce.uth.gr/peryton/
https://disbiome.ugent.be/home/
http://bioinfo.imtech.res.in/manojk/abiofilm/
http://bioinfo.imtech.res.in/manojk/abiofilm/
https://drugvirus.info/tech_doc/
https://www.inetbio.org/humannet/download.php
http://www.microbialnet.org/mind_home.html/
https://string-db.org
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in a certain rank, they have a sequencing likeness to 
some extent [79].

Based on drug similarity

• Drug microbe associations: Drug Bank (http:// www. 
drugb ank. ca/) is a web-based database that contains 
detailed molecular information about medications, 
their mechanisms, interactions, and targets. The 
most recent update was in 2018 [110].

• Genome sequences: The NCBI database (https:// www. 
ncbi. nlm. nih. gov/ genome/) is used to obtain genome 
sequences. It contains a wealth of information about 
the disease that can be used to create DAG charts for 
disease expression.

• Heterogeneous networks: heterogeneous networks, 
namely microbe–drug heterogeneous networks and 
microbe–disease–drug networks, from a variety of 
sources including DrugBank [110], HMDAD [21], 
and CTD [111].

Drug structural similarity matrix: SIMCOMP search 
service (http:// www. genome. jp/ tools/ simco mp/), is a 
chart-based solution for finding the most uniformity with 
the most click-through search on the chart. This server 
is used to find chemical similarities. The second search 
server is SUB COMP (http:// www. genome. jp/ tools/ 
sumco mp/), which is a suggested method for solving the 

problem of uniformity under graphs. Both of these pro-
vide a basis for the study of chemical and physical prop-
erties [112].

Web‑based tools
There are several web-based tools available to customize 
the prediction of microbe–disease associations. Among 
the web-based tools, there is a Micro Pattern for calcu-
lating similarities. For comparison, it divides microor-
ganisms into disease-related classes. Currently, there 
are no tools available for enrichment analysis of a list of 
microorganisms. MicroPattern (http:// www. cuilab. cn/ 
micro patte rn) is a web-based tool for microbe set enrich-
ment analysis. [113]. For other areas of expertise Micro-
Pro predicts phenotypes using the complete case and 
controls frequency profiles and can estimate unknown 
microbial abundance profiles based on the unplanned 
readings of metagenomics results (for example, meta 
PPISP [114], DINIES [115],and DIANA-microT [116] are 
advanced forecasting methods) [117].Net Cooperate, an 
online instrument, can measure a host’s capacity to pro-
vide nutritive support for a parasitic or commensal cell, 
as well as the (in addition to) complementarity of two 
microorganisms depending on their metabolic networks 
[118]. Using web-based operating systems and exist-
ing software, a methodological and biomedical study of 
microorganisms’ reactions and humans becomes easier. 
(http:// pharm acomi crobi omics. org) is a research-based 
online website dedicated to learning about how microbes 
modulate drug action [119].

Table 4 Various approaches for predicting the relationship between microbes and diseases

Category Method Description

Path-based methods KATZHMDA, PBHMDA, MDPH_HMDA, BWNMHMDA, 
WMGHMDA

Numbers and weighted scores of various sorts of pathways 
between two nodes are often taken into consideration by 
path-based approaches

Random walk methods RWRHMDA, BiRWHMDA, PRWHMDA, NTSHMDA, BDSILP, 
BiRWMP, BRWMDA, NBLPIHMDA, RWHMDA

For iterative walking, random walk algorithms provide a 
graph-based transition probability matrix

Bipartite local models LRLSHMDA, NGRHMDA, NCPHMDA, KATZBNRA BLMs are capable of making independent predictions on 
both the microbial and disease fronts

Matrix factorization methods CMFHMDA, GRNMFHMDA, NMFMDA, KBMF, MDLPHMDA, 
mHMDA

Matrix factorization methods maximize two latent informa-
tive matrices, whose multiplication approximates the asso-
ciation matrix with distinct constraint terms, using different 
constraint terms

Network-based methods MGATMDA, GATMDA, NINIMHMDA, BPNNHMDA,HMDA-
PRED, LPHMDA

Because neural networks can adapt to changing input, they 
can produce the best possible outcome without requiring 
the output criteria to be redesigned

Machine learning-based MDAKRLS It is a machine learning-based strategy that employs fewer 
model parameters, saving time and ensuring reliable results

Other methods ABHMDA, BMCMDA, MCHMDA Ensemble learning and matrix completion are two of the 
most common strategies used

http://www.drugbank.ca/
http://www.drugbank.ca/
https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/genome/
http://www.genome.jp/tools/simcomp/
http://www.genome.jp/tools/sumcomp/
http://www.genome.jp/tools/sumcomp/
http://www.cuilab.cn/micropattern
http://www.cuilab.cn/micropattern
http://pharmacomicrobiomics.org
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Future directions and conclusion
Machine learning is a very useful technique, and simi-
lar algorithms like least squares, matrix factorization, 
and completion have been commonly applied to prob-
lems. Feature-based machine learning algorithms have 
been hampered by a lack of effective functionality and 
hence have gained little recognition. In comparison to 
machine learning, deep learning, which is considered a 
worthwhile effort, has yet to be implemented in MDA 
prediction. Many studies have proposed methods based 
on deep learning that target a complex topological net-
work and catch its node embeddings in response to the 
aforementioned dilemma. The proposed models in the 
literature used many types of neural networks to pre-
dict drug-microbial communication. Since deep learn-
ing methods are a kind of machine learning method, it 
should be pointed out that their methods could be put 
to work for further studies to achieve better and more 
accurate predictions. Considering the ongoing trends 
of sources, databases, and experimental and labora-
tory articles in the field of microbiome, medicine, and 
diseases, more and stronger links between drugs, dis-
eases and microbes could be considered, and forecast-
ing these relationships with the help of computational 
approaches could pave the way for new microbe-based 
research discoveries [120–125].

In recent years, significant computational work 
has been done in the fields of microbes–disease 
and microbes–drugs. The work done in the field of 
microbes-disease has been used in different ways than 
microbes-medicine. Predicting drug and diseases asso-
ciations with microbiome is very important in reveal-
ing the relationship between human diseases and drugs 
with microbiota. This article provides a thorough exam-
ination of forecasting microbial associations. Advanced 
omics technology and sequencing technologies enable 
a variety of methods to detect changes in the microbial 
composition of the patient. Data from existing trials 
and clinical results are problematic with information 
loss, non-uniform dispersion, lack of an integrated clas-
sification standard, and ambiguity of disease and drugs. 
To solve these problems using computational meth-
ods, machine learning algorithms and especially neural 
networks are recommended as an inimitable strategy. 
Machine learning methods are continually evolving, 
it is believed that the integration and development of 
these computational algorithms will improve the speed 
and accuracy of predicting interaction and structure. 
Most studies and work related to disease and medi-
cine in the field of the microbiome could be conducted 
with the existence of databases in this field. The spe-
cific database for drugs and diseases in the field of the 

microbiome is very limited and needs to be developed 
with more experimental entries and accurate compu-
tationally predicted entries. Known associations in the 
field of microbes-disease and microbe–drug are rela-
tively low and this leads to less prediction accuracy. If 
more links between them are identified and checked 
experimentally, other interactions will be predicted by 
computational methods accurately.

Key points

• Human health is influenced by the microbes that 
reside within and on human bodies. The microbe–
disease association prediction is a computer-based 
pre-screening tool for clinical trials investigating 
microorganism-related pathogenic processes.

• Quantitative records of microbial population fluctua-
tion in experimental instances enable the models to 
conduct fine-grained prediction tasks, and network 
analysis might become used to infer microbiological 
pathogenesis with annotated networks of biological 
events in the future.

• Predicting microbe–drug interactions can assist 
humans by making medication research and custom-
ized therapy efficiently.

• Exploring intricate mechanisms of microorganisms 
in clinical therapy, drug development, interactions, 
and repurposing will be considerably aided by pro-
spective microbe–drug relationships prediction.
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