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Abstract 

Bacteria form a highly complex ecosystem in the gastrointestinal (GI) tract. In recent years, mounting evidence has 
shown that bacteria can release nanoscale phospholipid bilayer particles that encapsulate nucleic acids, proteins, 
lipids, and other molecules. Extracellular vesicles (EVs) are secreted by microorganisms and can transport a variety of 
important factors, such as virulence factors, antibiotics, HGT, and defensive factors produced by host eukaryotic cells. 
In addition, these EVs are vital in facilitating communication between microbiota and the host. Therefore, bacterial EVs 
play a crucial role in maintaining the GI tract’s health and proper functioning. In this review, we outlined the struc‑
ture and composition of bacterial EVs. Additionally, we highlighted the critical role that bacterial EVs play in immune 
regulation and in maintaining the balance of the gut microbiota. To further elucidate progress in the field of intestinal 
research and to provide a reference for future EV studies, we also discussed the clinical and pharmacological poten‑
tial of bacterial EVs, as well as the necessary efforts required to understand the mechanisms of interaction between 
bacterial EVs and gut pathogenesis.
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Introduction
The gastrointestinal (GI) tract serves as the primary site 
for food digestion and absorption while also acting as a 
gateway for toxin invasion. It performs the dual func-
tions of digestion and absorption as well as intestinal 
defense, which cannot be accomplished by the digestive 
system alone [1]. Hidden within the GI tract is a unique 
"organ" called the intestinal flora, which plays a criti-
cal role in digesting chyme and protecting the intestines 
[2–4]. The intestinal flora consists of thousands of species 
and over 10 trillion bacteria, which lack a cell connection 
and stable extracellular matrix with host cells. As a result, 
communication between surface proteins and secre-
tory proteins becomes challenging. Extracellular vesicles 
(EVs) produced by intestinal bacteria serve as the pri-
mary mode of material transport and communication [5], 
and they remain active in the intestinal microenviron-
ment while passing through the vascular barrier to enter 
the bloodstream [6]. Using specific surface structures, 
EVs recognize and bind to either bacteria or host cells, 
transmitting substances and signals. Intestinal bacteria 
and host cells continuously secrete and accept extracel-
lular vesicles in the intestinal microenvironment, thereby 
affecting the viability of bacteria and the physiologi-
cal function of host cells. These vesicles transport sub-
stances and information between the two types of cells 
[5]. In recent years, mounting evidence has confirmed 
that bacteria can secrete EVs as phages, antibiotics, and 
eukaryotic host defense actors [7, 8]. Additionally, EVs 
play crucial roles in intercellular communication, viru-
lence factor transport, horizontal gene transfer (HGT), 
nutrient and electron transport, and biofilm formation 
[9–11]. Detecting bacterial EVs enables us to understand 
the composition of intestinal flora and aid in diagnosis. 
Transforming bacterial EVs can help us develop bacte-
rial vaccines or immune adjuvants, as well as target drug 
delivery. However, future work should focus on regulat-
ing intestinal flora and protecting host cells through bac-
terial EV preparations [12, 13].

Composition and distribution of the microflora 
in the gut
More than 99% of the microbiota in the intestine is com-
posed of intestinal flora, and the number of bacteria in 
the intestine exceeds the number of human cells. There 
are at least 1000 to 150 species present in the intestinal 
tract, and more than 500 species can be cultured. These 
are concentrated in 5–7 bacterial phyla, of which Bac-
teroidetes and Firmicutes make up about 95% and are 
part of the predominant microflora (Fig.  1) [14]. Typi-
cally, these bacteria are obligate anaerobes and specialize 
in colonizing the intestine. Most of them are probiot-
ics and have a symbiotic relationship with the host [15]. 

However, most of the sub-dominant microflora belong 
to foreign or transient flora with high mobility. They are 
mainly aerobic bacteria or facultative anaerobic bacte-
ria and may have potential pathogenicity that can cause 
harm to the host [15]. The intestinal flora is complex and 
diverse, and its composition can be influenced by various 
factors, such as age, diet, exercise, heredity, drugs, liv-
ing environment, regional climate, and health status [3, 
4, 15–20]. The leading indicators for evaluating intestinal 
flora include the concentration of colonic bacteria, the 
diversity of intestinal bacteria, and the ratio of probiot-
ics [21]. In healthy individuals, probiotics are usually the 
dominant bacterial species in the intestine. Studies have 
shown that the proportion of probiotics in the intestine 
is about 70% in healthy individuals, 25% in average indi-
viduals, and 15% in those with constipation. However, the 
proportion of probiotics is only about 10% in the intes-
tine of cancer patients [21, 22]. Figure 1 provides a visual 
representation of the microbial density and species pre-
sent in the gut.

The intestinal microbiota is closely intertwined with 
the physical and chemical environment of the gut and the 
host cells, collectively constituting the intestinal micro-
ecosystem. These elements have a reciprocal and restric-
tive influence on each other, always striving to maintain a 
dynamic equilibrium, known as intestinal microecologi-
cal homeostasis [23]. An imbalance in the intestinal flora 
can disrupt the host cells and the physical and chemical 
environment of the intestine, leading to intestinal micro-
ecosystem disorders. This imbalance can cause not only 
acute and chronic inflammatory reactions, GI dysfunc-
tion, digestive tract tumors, and other digestive system 
diseases but also extraintestinal diseases, such as obesity, 
type 2 diabetes, liver disease, atherosclerosis, infectious 
diseases, allergic diseases, and mental and neurological 
dysfunction [24].

Biogenesis of bacterial EVs
Vesicle transport is the primary means by which cells 
transport macromolecules. EVs are a diverse array of 
vesicles released by cells [25–28]. Bacteria are unicellular 
prokaryotes. Bacterial EVs are secreted and transported 
by bacteria, facilitating the transfer of information and 
energy conversion. This mode of transport differs from 
small molecule transmembrane transport and the bacte-
rial protein I–IX secretion systems [27, 29–31].

Bacteria can be categorized into Gram-negative and 
Gram-positive based on Gram staining, and they dif-
fer in their secretion of EVs [27, 32, 33]. Gram-negative 
bacteria possess an outer membrane structure, and it 
is commonly believed that EVs are vesicles formed by 
the extrusion of the bacterial outer membrane, known 
as outer membrane vesicles (OMVs) [34, 35]. Most 
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Gram-negative bacteria secrete OMVs, and it is believed 
that the size of bacterial OMVs is similar to that of eukar-
yotic microvesicles, resulting from the pinching off of the 
outer membrane [36]. The specific mechanism of exfolia-
tion is not clear, but proposed models mainly include the 
dissociation of stable cross-links of cell walls, the enlarge-
ment of the distance between the inner and outer mem-
branes of bacteria, the local bulging and breakage of the 
outer membranes, and the orderly exfoliation of OMVs 
under the regulation of bacterial genes [32, 33, 37–39]. 
Moreover, a small proportion of cells are lysed to form 
outer-inner membrane vesicles (OIMVs) and explosive 
outer membrane vesicles (EOMVs) [28, 40]. Cell lysis 
can be triggered by DNA damage or by the partial deg-
radation of the peptidoglycan layer of the cell wall by 
autolysin to form pores, where the inner and outer mem-
branes protrude outward to wrap the cytoplasmic com-
ponents, forming vesicles that are eventually squeezed 
out of the bacterial surface to form OIMVs [40]. When 

cell death and lysis occur, membrane fragments produced 
by explosive lysis can re-aggregate and randomly encap-
sulate cytoplasmic components to form vesicles, known 
as EOMVs [41]. Figure 2 provides further details on the 
occurrence of OMVs, OIMVs, and EOMVs.

On the other hand, the cell wall of Gram-positive bac-
teria lacks an outer membrane structure and is encased 
with a thick peptidoglycan layer. Currently, it is widely 
accepted that the weakening of the peptidoglycan layer 
by cell wall degrading enzymes and the increase of bacte-
rial internal pressure allow for the release of the bacte-
rial inner membrane, and the bacterial plasma membrane 
wraps the cytoplasmic components and bulges outward 
to form vesicles known as cytoplasmic membrane vesi-
cles (CMVs). Only a small fraction of Gram-positive bac-
teria secrete CMVs [27, 32, 42–47]. OMVs and CMVs 
differ in generation, morphology, and function, as sum-
marized in Table 1 [48, 49]. OMVs and CMVs are collec-
tively referred to as membrane vesicles (MVs) [29, 30]. 

Stomach

Helicobacter genera spp.
Lactobacillus spp.
Propionibacterium spp.
Streptococcus spp.
Staphylococcus spp.
   (102~104 bacteria/mL)

  Large

Alistipes spp.
Anaerostipes spp.
Bacteroides spp.
Bifidobacterium spp.
Clostridum cluster spp.
Dorea spp.
Eubacterium spp.
Faecalibacterium spp.
Paecalibacterium spp.
Prevotellaceae spp.
Roseburia spp
Rikenellaceae spp.
Ruminococcus spp.
     (>1011 bacteria/mL)

intestine
  Small

Escherichia spp.
Bacteroides spp.
Clostridium coccoides
Lactobacillus spp.
Shigella spp.
Salmonella spp.
Streptococcus spp.
Veillonella spp.
  (107~108 bacteria/mL)

intestine

Fig. 1 The bacterial flora inhabits in regions of human gastrointestinal tract constitute a complex ecosystem. More than 10 [14] microorganisms, 
500 bacteria species have been identified in GI. The upper gastrointestinal tract (stomach, duodenum, jejunum, and upper ileum) is usually 
contained Lactobacillus, with bacterial concentrations less than 10 [4] microorganisms/ml. By contrast, bacteria in the large intestine are dramatic 
increase as 10 million bacteria. Anaerobic bacteria (A. bacteria) such as Bacteroides, Enterobacter, Anaerobic Streptococcus (A. Streptococcus), Clostridium 
and Lactobacillus are 1000 times more abundant than facultative anaerobes such as E. coli. It is a general trend that bacteria increase in complexity 
and concentration as they enter the gastrointestinal tract
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While MVs and EVs secreted by eukaryotic cells share 
similarities in structure, they differ in composition and 
function, as outlined in Table 2 [43, 50].

The production and secretion of bacterial EVs are influ-
enced by the expression and regulation of bacterial genes, 
as well as the growth environment of bacteria [51, 52]. 
Bacterial genetic performance, such as bacterial adhe-
sion, reproduction, and resistance to digestive enzymes 
and antibiotics, is closely related to the EVs secreted by 
bacteria [52, 53]. The production and secretion of EVs 
by bacteria are also affected by host age, dietary habits, 

antibiotic use, GI function, immune response, stress 
response, intestinal physical and chemical environment, 
and intestinal microbial composition [54–61]. Studies 
have found that the more vigorous the cell metabolism 
and the more stimulation the cell receives, the more EVs 
are secreted [30, 62, 63].

EVs can be categorized into different subtypes based 
on their pathogenesis and morphological structure. Each 
subtype represents different physiological or pathologi-
cal states of cells and has different purposes and func-
tions. Similar to eukaryotic EVs, bacterial EVs can be 
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Peptidoglycan
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CMV
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Fig. 2 Biogenesis model and composition of bacterial extracellular vesicles (bEVs). The composition of bEVs includes biphospholipid layers, 
proteins, glycoproteins, metabolites, and nucleic acids. A bEVs derived from Gram‑negative bacteria can be released through the outer membrane; 
(i) by reducing outer membrane‑peptidoglycan protein linkages; (ii) lipid/LPS differential assembly in specific regions of the outer membrane; 
(iii) swelling pressure by accumulation of protein or peptidoglycan fragments in the periplasmic space; (iiii) blast by cell lysis. B bEVs derived from 
Gram‑positive bacteria can be released from the swelling pressure caused by EV accumulation through the cell wall composed of peptidoglycan; 
these turgor pressure promotes membrane curvature, then bEVs are released by peptidoglycan‑degrading enzymes
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classified into exosomes, microvesicles, apoptotic bod-
ies, and oncosomes. There may be additional subtypes 
of bacterial EVs that have yet to be discovered, and fur-
ther research into the mechanisms of their occurrence 
can reveal different physiological states of bacteria and 
uncover a wider range of functions of EVs [8, 27, 40, 62].

Components of bacterial EVs
Bacterial EVs are nanoscale spherical transporters that 
are composed of a phospholipid bilayer membrane 
and have a diameter ranging from 20 to 250  nm. The 

membrane envelops nucleic acids, proteins, lipids, 
and other substances, while specific lipopolysaccha-
rides and outer membrane proteins are embedded in 
the outer layer of the membrane. The asymmetry and 
fluidity of the membrane structure are responsible for 
the specific structure and function of the membrane 
surface [9, 64, 65], which is influenced by genetic and 
growth environments. EVs from different bacteria have 
different contents, with a focus on protein sorting, pro-
tein proportion, and DNA or RNA with different func-
tions [66].

Table 1 Comparison between gram‑negative and gram‑positive extracellular vesicles

Features Gram-negative EVs Gram-positive EVs References

Origin Outer membrane Cytoplasmic membrane [39]

Size 10 nm‑300 nm 20 nm‑400 nm [39]

Components Outer membrane proteins, periplasmic proteins, 
virulence factors, cytoplasmic proteins, inner mem‑
brane proteins, lipopolysaccharides, phospholipids, 
and peptidoglycan (10%‑20%)

Cytoplasmic proteins, membrane‑associated pro‑
teins, lipoteichoic acid (LTA), peptidoglycan (> 50%)

[39]

Genetic components sRNA, mRNA, miRNA, luminal and surface associ‑
ated DNA

sRNA, extracellular and chromosomal DNA [39, 201]

Proteins Outer membrane: OmpA, OmpC, OmpF, lipopro‑
tein (Lpp), periplasmic: Alkaline phosphatase and 
AcrA

Single lipid membrane proteins: penicillin‑binding, 
immunoglobulin G‑binding (protein A), staphopain 
A, α‑haemolysins, heat‑shock protein

[42, 202]

Lipids Glycerophopholipids, phosphatidylethanolamine, 
phophotidylglycerol and cardiolipin

Phosphatidylglycerol, myristic and palmitic acids [120, 202]

Coagulation E‑selectin, P‑selectin, thrombomodulin Fibronectin binding protein, staphylocoagulase 
precursor, Vonwillebrand factor binding protein

[202]

Antibiotic resistance β‑lactamase, enzyme L5, multidrug efflux protein 
(Mtr, Mex, TolC)

β‑lactamase, Penicillin‑binding proteins: PBP1, 
PBP2, PBP2a, PBP3 and PBP4

[202]

Virulence factor delivery Enzymes: phospholipase C, esterase lipase, alkaline 
phosphatase, serine protease Toxins: adenylatecy‑
clase, cholera, cytolethal distending, PagJ, PagK1, 
VacA

InIB, LLO, IgG binding protein SbI, protective anti‑
gen, lethal factor, edema toxin, anthrolysin

[202]

Bacterial survival Hemin‑binding protein, TonB‑dependent receptors β‑lactamase protein [202, 203]

Bacteria adhesion and invasion Adhesin/invasin, OmpA Plasma binding proteins, staphopain A [202]

Immune evasion Cytotoxic necrotizing factor 1, UspA1/A2 Coagulation factors, antibody degradation and 
sequestering factors, complement inhibition 
factors

[46, 202]

Host‑cell modulation Cytolysin A, VacA toxin, CNF1, heat‑liable entero‑
toxin, shigatoxin, Cif, flagellin, α‑haemolysin

Proteolysin, β2 toxin [202]

Killing competing bacteria Endopeptidase L5, murein hydrolase (Mtl, Slt), 
peptidoglycan hydrolase

N‑aetylmuramoyl‑L‑alanine amindase [202]

Biogenesis a. Loss or relocation of covalent linkages between 
the OM and the underlying peptidoglycan layer
b. Accumulation of peptidoglycan fragments in the 
outer leaflet of the OM
c. Misfolded proteins in periplasmic space exerting 
turgor pressure on OM
d. Enrichment of species‑specific membrane 
curvature‑inducing molecules

Action of cell wall‑degrading enzymes; endolysin, 
autolysin

[36]

Lipids Glycerophopholipids, phosphatidylethanolamine, 
phophotidylglycerol and cardiolipin

Phosphatidylglycerol, myristic and palmitic acids [120, 202]

Coagulation E‑selectin, P‑selectin, thrombomodulin Fibronectin binding protein, staphylocoagulase 
precursor, Vonwillebrand factor binding protein

[202]
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Proteins
Proteomic analysis has identified more than 3,500 pro-
teins associated with OMVs [67, 68]. OMVs have been 
found to contain a large number of outer membrane 
proteins, including OmpA, OmpC, and OmpF, as well 
as periplasmic proteins, such as AcrA and alkaline 
phosphatase [67, 68]. Additionally, OMVs contain vari-
ous adhesins and exotoxins [69]. The majority of OMV 
proteins are virulence factors that aid in the survival of 
bacteria by promoting bacterial growth, inhibiting com-
petitive bacteria, evading host immunity, and resisting 
environmental toxins. OMVs also contain carrier pro-
teins and channel proteins that are responsible for trans-
port, accounting for a large proportion of OMV proteins 
[69]. Proteins carried by OMVs are strictly sorted based 
on their amino acid sequences, which contain special sig-
nal sequences known as signal peptides [70]. These signal 
peptides act as sorting signals that guide proteins to their 
target compartments. Each sorting signal is recognized 
by a corresponding sorting receptor. Proteins synthe-
sized by bacterial ribosomes are transported to the inner 
and outer membranes, periplasm, or outside of the cell 
by various secretion systems. If a protein is loaded into a 
small vesicle, the corresponding receptor on the vesicle 
membrane must recognize its sorting signal signal [10, 

68, 71]. The protein content of OMVs is subject to change 
due to alterations in gene expression and the growth 
environment of bacteria [70].

Nucleic acids
Bacterial EVs have been found to contain multiple types 
of nucleic acids [72]. EVs can carry DNA both in the 
lumen and on the membrane surface. The DNA in the 
lumen retains its antigenicity even after treatment with 
DNase, distinguishing it from the membrane-bound 
DNA. OMVs also contain miRNAs, mRNAs, and other 
non-coding RNAs. Several different forms of luminal 
DNA have been identified in OMVs secreted by Escheri-
chia coli (E. coli), Neisseria gonorrhoeae (N. gonorrhoeae), 
Pseudomonas aeruginosa (P. aeruginosa), and Haemophi-
lus influenzae (H. influenzae) [73].

OMVs have been found to contain mRNA, which can 
be transferred and translated after entering the host cell. 
Retrotransposons and other non-coding RNAs have also 
been reported in OMVs [74, 75]. The discovery of vari-
ous nucleic acid types in OMVs highlights their impor-
tance as carriers and transmitters of genetic information, 
although the mechanism by which nucleic acids enter 
OMVs remains unclear. Similar to the intracellular trans-
port of proteins, it is speculated that the intracellular 

Table 2 Differences and similarities in EVs deriving from eukaryotic cells and bacteria

Eukaryotic Organism Bacteria

Spherical particles with a size range from 30 to 100 nm (exosomes), 
100–1000 nm (MVs) or 500–2000 nm (apoptotic bodies)
Stable at 37 °C for 24 h. Sensitive to high temperature but stable in the 
frozen and freeze‑dried states [204]

Spherical particles with a size range from 10 to 400 nm. The maximum size 
is smaller than eukaryotic EVs due to smaller sized bacterial cells
Stable at 37 °C for 24 h. Greater tolerance to hot temperatures [205]. Stable 
in the frozen and freeze‑dried states

Exosomes are commonly enriched in endosome‑associated proteins Mainly composed of proteins and phospholipids of the outer membrane

Exosomes and MVs are released by healthy and damaged cells. Apoptotic 
bodies are released by dying cells on an apoptotic pathway

All Gram‑negative bacteria produce outer membrane vesicles (OMVs) and 
possibly also all Gram‑positive bacteria. Gram‑negative bacteria can pro‑
duce specific vesicles with a double layer using both the outer and inner 
membranes

Originates in the plasma membrane except exosomes, which are made 
by the endocytic pathway

Bacteria Gram‑negative and Gram‑positive have a different mechanism of 
vesicle formation due to their distinct membrane structure, which origi‑
nates in the membrane

They are released from cells by a variety of mechanisms depending on 
their mode of biogenesis and they are not released homogeneously by 
the membrane

Production is not uniformly distributed along the bacteria surface but there 
are “hot spots”

High heterogeneity in the composition of the surface and the interior High heterogeneity in the composition of the surface and the interior

There are universal markers such as CD40 for microvesicles or flotillin for 
exosomes

There are no universal markers for their identification due to their diversity

EVs can contain different RNAs such as miRNA or mRNA but it is unusual 
for them to carry DNA

EVs can contain genetic material and participate in horizontal gene transfer

Harmful cells such as tumor cells present EVs with specific and useful 
contents for their survival

In pathogenic bacteria, specific molecules have been found such as adhes‑
ins, toxins and/or immunomodulatory compounds as cargo of OMVs

The main function is intercellular communication, except for apoptotic 
bodies, which facilitates phagocytosis

They are more relevant as a mechanism to carry away toxic compounds for 
bacteria than in eukaryotic cells

Production depends on the cell type and its physiology state Their production increases as a response to environmental stress

A non‑spontaneous biological process A non‑spontaneous biological process
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transport of nucleic acids may involve corresponding 
recognition sequences through which nucleic acids are 
selected to enter OMVs [76, 77].

Lipids
The basic structure of EV membranes is composed of 
lipids, primarily phospholipids, and lipopolysaccharides. 
In E. coli OMVs, glycerophospholipid, phosphatidylg-
lycerol, and phosphatidylethanolamine are important 
lipid components that contribute to the curvature of the 
OMVs [78]. Lipopolysaccharide (LPS) is an endotoxin 
and serves as an important antigen and ligand on the 
membrane surface, playing a crucial role in adhesion 
and activating the immune response. LPS is composed of 
three parts: lipid A, core polysaccharide, and O antigen. 
Lipid A is the most toxic component, while the O anti-
gen is exposed on the membrane surface and serves as an 
important antigenic determinant [79, 80].

Role of bacterial EVs in the gut
EVs secreted by intestinal bacteria can diffuse in the 
intestinal microenvironment or enter the bloodstream. 
They are capable of recognizing specific molecules pre-
sent in the environment through ligands on their mem-
brane surface and can also be recognized and bound by 
specific receptors on the membrane surface of target 
cells. Once inside the cells, they can transmit substances 
and activate specific signaling pathways to transmit infor-
mation [81, 82]. EVs are powerful tools that can deliver, 
bind, and transform substances (Fig.  2) [53, 83]. These 
vesicles carry various substances that have been screened 
by bacteria, representing the bacteria’s viability. They play 
a similar role to bacteria and have a significant impact on 
host cells, intestinal microorganisms, and the intestinal 
environment [12, 84].

EVs have different effects on the growth, reproduction, 
and colonization of bacteria of the same species. They 
also have both advantages and disadvantages for other 
bacteria and host cells. For example, they can promote 
the colonization of probiotics and regulate the immune 
response, which is beneficial to the host. However, they 
can also destroy the host mucosal barrier and cause 
inflammatory storms that are harmful to the host. The 
current study has identified the role of bacterial EVs in 
the gut, which is summarized in Table  3. This includes 
related studies on the role of EVs from known intestinal 
bacteria in the intestine [13].

Host cells
Intestinal immune cells
EVs recognize and stimulate immune cells through path-
ogen-associated molecular patterns (PAMPs), mainly 
including specific antigens, such as LPS, peptidoglycan 

on the surface of the membrane, and DNA in the cell. 
They combine with pattern recognition receptors (PRRs) 
for target recognition [85, 86]. PRRs associated with bac-
terial EVs include Toll-like receptors (TLRs) on the cell 
surface, such as TLR4 activated by LPS, and NOD-like 
receptors (NLRs) in cells, such as NOD1 and NOD2, 
activated by peptidoglycan components. Cysteine-con-
taining aspartic proteolytic enzymes (Caspases), such as 
Caspase-11, which act as intracellular receptors for LPS, 
mediate the activation of an intracellular inflammatory 
pathway in OMVs (Fig. 3) [87].

When bacterial EVs recognize and bind to immune 
cells, whether they are beneficial to host immune regula-
tion depends on the source of bacteria and the substances 
they carry [88–90]. Firstly, LPS and peptidoglycan on the 
surface can stimulate intestinal immune cells, trigger an 
inflammatory response, and maintain normal intestinal 
immune function. However, they can also trigger immu-
nosuppression, an excessive immune response, or induce 
immune tolerance, which may lead to bacterial invasion 
or infection of the host and enable the bacteria to evade 
the host’s immune response [91, 92]. Secondly, sDNA 
or DNA antigenicity or specific virulence factors in EVs 
can invade immune cells by endocytosis or endocytosis, 
affect the expression of inflammatory factors in immune 
cells, induce apoptosis of immune cells, and create condi-
tions for bacterial invasion or infection [87, 93].

EVs derived from probiotics have mostly been shown 
to have beneficial effects on host immune regulation. 
For example, OMVs secreted by Bacteroides fragilis (B. 
fragilis) carry polysaccharide A (PSA) and are deliv-
ered to intestinal dendritic cells, which can induce 
CD4 + regulatory T cells (Tregs) to produce IL-10, 
down-regulating inflammatory responses and effectively 
ameliorating DSS-induced colitis of the colon [94–96]. 
Similarly, OMVs secreted by Akkermansia muciniphila 
(A. muciniphila) have been shown to significantly down-
regulate DSS-induced colitis in mice and play an impor-
tant role in regulating inflammatory immune response 
and maintaining the intestinal immune barrier [97]. 
Lactobacillus paracasei (L. paracasei) is a probiotic with 
anti-inflammatory properties, and in  vitro studies have 
shown that EVs from L. paracasei (LpEVs) can down-reg-
ulate the expression of proinflammatory cytokines, such 
as IL-1α, IL-1β, IL-2, and TNF-α, and up-regulate the 
expression of anti-inflammatory cytokines, such as IL-10 
and TGF-β. Additionally, LpEVs can inhibit the activation 
of inflammatory proteins, such as COX-2, iNOS, NF-κB, 
and nitric oxide (NO), in signal transduction pathways 
and significantly inhibit the inflammatory response of 
human colon adenocarcinoma HT-29 cells induced by 
LPS. Animal experiments have also demonstrated that 
oral administration of LpEVs can significantly prevent the 
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Table 3 Studies evaluating the role of microbiota derived BEVs as modulators of intestinal homeostasis‑related processes

Bacteria Mechanism Experimental approach References

Gut ecology and food metabolism

 Bacteriodes fragilis
 B. thetaiotaomicron

Metabolism of complex carbohydrates to 
produce SFCAs: Expression of glycosyl‑
hydrolases, sulfatases, proteases
Cholesterol uptake: upregulation NPC1L1 
receptor
Metabolites in BEVs that facilitate intestinal 
colonization

Proteomics of BEVs by mass spectrometry
In vitro Caco‑2 cell culture
In silico, proteomic and metabolomic 
analysis

[137, 188, 206–208]

 B. thetaiotaomicron Assimilation of dietary Insitol‑P
Macrophage internalization (Sulfatases)

Biochemical characterization of InsP6‑
phosphatase
Experimental model of colitis using geneti‑
cally modified mice

[209, 210]

 Bacteroides fragilis Antibiotic resistance (β‑lactamases) Knockout mutant of putative β‑lactamase 
gene

[150]

Epithelial barrier integrity

 E. coli Nissle 1917
 ECOR63 strain

Upregulation of TJ proteins ZO‑1 and clau‑
din‑14, downregulation of claudin‑2
Protection against EPEC‑induced damage: 
preservation of occludin and claudin‑14 
mRNA levels, redistribution of ZO1, amelio‑
ration of F‑actin disorganization

In vitro Caco‑2 and T‑84 cell cultures: RT‑
qPCR, confocal microscopy
In vitro Caco‑2 and T‑84 cell cultures 
infected with EPEC: RT‑qPCR, confocal 
microscopy, paracellular permeability assays

[116, 211]

 E. coli Nissle 1917 Upregulation TFF3 and MMP‑9 mRNA In vivo mice model of DSS‑induced colitis [117]

 Akkermansia muciniphila Upregulation of ZO‑1, claudin 5
Upregulation of ZO‑1, ccluding, claudin‑1
Upregulation of ccluding, ZO‑1/2, claudin‑4

In vivo high‑fat diet (HFD)‑induced diabetic 
mice model, and Caco‑2 cell culture
In vivo HFD‑induced obesity mice model
In vitro Caco‑2 cells challenged with LPS

[212–214]

Gut immunity: modulation of inflammatory responses through the intestinal epithelium

 E. coli Nissle 1917
 ECOR12 strain

Upregulation of IL‑6, IL‑8, TNF‑α, IL‑10, MIP1α
Upregulation of IL‑22 and β‑defensin
Downregulation of IL‑12
Activation of NOD‑1 / NF‑κB pathway

In vitro Caco‑2/PBMCs cell coculture model
Ex vivo model of colonic explants
Caco‑2 cells: NOD1 silencing—RIP2 kinase 
inhibition

[215, 216]

 E. coli Nissle 1917 Upregulation of IL‑10; downregulation 
of IL‑1β, TNF‑α, IL‑6, IL‑12, IL‑17, iNOS and 
COX‑2 in colonic tissue

In vivo mice model of DSS‑induced colitis [117]

 Lactobacillus kefir
 L. kefiranofaciens
 L. kefirgranum

Downregulation of IL‑8
Counteract oxidative stress by decreasing 
myeloperoxidase serum levels

Caco‑2 cells challenged with TNF‑α
In vivo mice model of TNBS‑induced IBD

[217]

Gut immunity: modulation of DCs and derived T cell responses

 Bacteroides fragilis Induction Treg cells 
(CD4 + CD25 + FOXP3 +) and IL‑10 produc‑
tion through a mechanism that involves 
TLR2
Activation of autophagy. Induction of Treg 
cells and IL‑10 production depends on 
functional ATG16L1 and NOD2

In vivo mice model of TNBs‑induced colitis
In vitro bone marrow‑derived DCs culture
BEVs from wild‑type and PSA deficient 
strains
Bone‑marrow derived DCs from wild type, 
ATG16L1‑ and NOD2 deficient mice
In vitro cocultures of BMDCs with  CD4+T 
cells
In vivo mice model DNBS‑induced colitis

[94, 96]

 Bacteroides vulgatus mpk Induction of DC tolerance via TLR2 and TLR4
Upregulation of co‑stimulatory molecules 
including MHC‑II, CD40, CD80 and CD86 in 
 CD11c+ cells

In vitro bone marrow‑derived DCs culture
TLR4/TLR2 knockout mice model

[218]

 Lactobacillus rhamnosus JB‑1 Increased production of IL‑10 and
regulatory  (CD4+CD25+FOXP3+) T cells

In vitro bone marrow‑derived DCs culture
In vivo mice model

[219]

 Lactobacillus sakei Enhance IgA expression Ex vivo model of murine Peyer’s patches [220]

 Bifidobacterium bifidum LMG13195 Promote differentiation to regulatory T cells 
 (CD4+CD25+FOXP3+) and IL‑10 secretion

In vitro model of monocyte‑derived DCs 
co‑cultivated with  CD4+ T cells

[221]

 Bifidobacterium longum Apoptosis of bone‑marrow‑derived mast 
cells through ESBP vesicular protein

In vivo mouse model of allergen‑induced 
food allergy

[222]
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reduction in body weight, colon length, and disease activ-
ity index (DAI), thus attenuating clinical signs in DSS-
induced mice [98].

According to Kim et al. [99], EVs derived from patho-
genic bacteria often result in host immune abnormali-
ties [99]. For example, E. coli OMVs transmit virulence 
factors to host intestinal macrophages, which up-regu-
late the expression of proinflammatory cytokines, such 
as IL-6 and TNF-α. This leads to systemic inflamma-
tory response syndrome (SIRS) and sepsis. Addition-
ally, the heat-labile enterotoxin (LT) on the surface of 

enterotoxigenic E. coli OMVs interacts directly with host 
cells through PRRs, activating proinflammatory signal-
ing pathways and chemokines expressed by host cells 
and ultimately causing inflammatory responses [100–
102]. Furthermore, Vibrio cholerae (V. cholerae) O395 
OMVs are taken up by intestinal epithelial cells through 
caveolin-mediated endocytosis of outer membrane por-
ins (OmpU and OmpT). This induces the expression of 
proinflammatory cytokines (such as IL-8 and GM-CSF) 
and chemokines (such as CCL2 and CCL20), leading to 
the polarization of T cells to Th2/Th17 and causing an 

Table 3 (continued)

Bacteria Mechanism Experimental approach References

 E. coli Nissle 1917
 Commensal E. coli

Upregulation of driver Th cytokines by DCs 
in a strain‑specific manner
Differential induction of Th1, Th2, Th17/Th22 
and T regulatory responses
Regulation of key miRNAs in immunity (miR‑
155, miR‑146a/b and miR‑let7i)
Differential modulation of miRNAs involved 
in tolerogenic responses (miR‑125a/99b/
let7e, miR‑125b, miR‑24)

In vitro model of monocyte‑derived DCs 
co‑cultivated with  CD4+ T cells
In vitro model of monocyte‑derived DCs: 
RNA seq approaches to identify differential 
expressed miRNAs

[223, 224]

Fig. 3 Bacterial outer membrane vesicles play an important role in bacterial interactions with human intestinal epithelial cells and intestinal 
immune cells
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inflammatory response [103, 104]. In the case of Helico-
bacter pylori (H. pylori), OMVs bind to human mono-
cytes and deliver virulence factors, such as vacuolating 
cytotoxin (VacA), strongly up-regulating the expression 
of inflammatory cytokines, such as IL-6 and IL-10. This 
inhibits the proliferation of CD4 + T cells and induces T 
cell apoptosis [105]. Flagellated bacteria, such as Salmo-
nella typhimurium (S. typhimurium) and Pseudomonas 
aeruginosa, release OMVs that cause strong NLRC4-
mediated caspase-1 activation and IL-1β secretion in 
macrophages in an endocytosis-dependent manner, pro-
moting an inflammatory response [106]. Besides, Acine-
tobacter baumannii (A. baumannii) OMVs containing 
the virulence factor OmpA target mitochondria in mice 
and disrupt the mitochondrial morphology of mouse 
macrophages [107, 108].

Intestinal epithelial cells
Bacterial EVs are capable of being recognized by intes-
tinal epithelial cells and can enter them through various 
mechanisms, including macropinocytosis and clathrin-
mediated endocytosis, in order to transmit substances 
or signals [10]. Depending on the components of OMVs, 
they may provide nutrients and digestive enzymes that 
are necessary for metabolism and help repair the intes-
tinal epithelial barrier. However, they may also have 
harmful effects, such as damaging the intestinal epithe-
lial cells, destroying the intestinal epithelial barrier, and 
inducing intestinal epithelial cell death, including apop-
tosis, necrosis, autophagy, and other harmful effects [99, 
109–114].

Bacteroides OMVs have been discovered to carry 
human therapeutic keratinocyte growth factor 2 (KGF-
2), which promotes the repair of intestinal epithelial 
cells in DSS-induced colitis in mice after oral adminis-
tration [115]. Other studies have demonstrated that the 
oral administration of EVs secreted by E. coli Nissle 1917 
(EcN), L. paracasei, and B. fragilis can promote the repair 
of intestinal epithelial cells and the intestinal mucosal 
barrier in DSS model mice, significantly improving the 
inflammatory response [98, 116, 117]. OMVs secreted by 
EcN and a human E. coli strain containing the tcpC gene 
(ECOR 63) can up-regulate ZO1 and claudin14 while 
down-regulating claudin2 in intestinal epithelial cells, 
which helps enhance the tight junction between intes-
tinal epithelial cells and reduce intestinal permeability 
(Fig. 3) [116].

Studies have demonstrated that OMVs secreted by 
various enterobacteria contain OMV-related virulence 
factors that can trigger the death of human intestinal 
epithelial cells, as well as the release of inflammatory 
factors [118]. The outbreak strain E. coli O104: H4 has 
been found to release OMVs carrying virulence factors, 

including Shiga toxin (Stx2a), which enters into intesti-
nal epithelial cells, targets the mitochondria, and induces 
the release of cytochrome C. This, in turn, activates the 
caspase-9 and caspase-3 pathways, leading to the forma-
tion of apoptotic bodies and the apoptosis of intestinal 
epithelial cells [113]. [113]. Enterohemorrhagic E. Coli 
(EHEC) releases OMVs containing the virulence factor 
EHEC hemolysin (EHEC-Hly), which is taken up into 
lysosomes through endocytosis by intestinal epithelial 
cells. EHEC-Hly then escapes from lysosomes and tar-
gets mitochondria, causing a decrease in mitochondrial 
transmembrane potential and the release of cytochrome 
C. This induces the formation of apoptotic bodies and 
triggers apoptosis of intestinal epithelial cells by activat-
ing caspase-9 conduction channels [119, 120].

In Crohn’s disease (CD), the endoplasmic reticulum-
localized stress response protein (ER-localized stress 
response protein, Gp96) is overexpressed on the sur-
face of ileal epithelial cells. PAMP molecules carried by 
OMVs derived from Adherent-invasive E. coli (AIEC) 
recognize and bind to Gp96 receptors on the surface of 
intestinal epithelial cells, promoting AIEC invasion and 
mediating the destruction of intestinal mucosal epithe-
lial cells in CD) [110, 121]. Fusobacterium nucleatum (F. 
nucleatum) secretes EVs containing a variety of virulence 
factors that promote M1 polarization of macrophages, 
leading to oxidative stress injury of intestinal epithelial 
cells. These EVs also activate receptor-interacting pro-
tein kinase 1 (RIPK1) and receptor-interacting protein 
kinase 3 (RIPK3), ultimately leading to the activation of 
caspase-3-related signaling pathways. This promotes pro-
grammed cell necrosis of intestinal epithelial cells and 
destruction of the intestinal epithelial barrier [122].

GI tumor cells
Research on the effect of bacterial EVs on GI tumor cells 
is still in its early stages. However, current studies have 
found that some bacterial EVs can invade host cells, caus-
ing chronic inflammatory responses, damaging genetic 
material, and increasing the risk of host cell canceration 
[123]. Bacterial EVs have also been found to be capable 
of crossing physiological barriers and selectively accu-
mulating near tumor cells, potentially altering the tumor 
microenvironment (TME) [124, 125].

Bacterial EVs use enhanced permeation and retention 
(EPR) effects and EPMP antigen molecules to induce 
tumor immune responses. Whether EVs can recognize 
introduced cells in tumor tissues and induce targeted 
tumor cell death requires further research. Neverthe-
less, modifying bacterial EVs to load chemotherapeutic 
drugs or anti-tumor components may be a new direc-
tion for anti-tumor therapy in the future [126, 127]. 
Animal experiments have shown that a mixture of 
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Bifidobacterium lactis (B. lactis) and Lactobacillus rham-
nosus (L. rhamnosus) can improve the level of intestinal 
butyrate, reduce the proliferation of cancerous cells, and 
decrease the activity of enzymes related to rectal cancer 
occurrence, thereby reducing the colon cancer morbidity 
of rats [128].

In mouse models, several intestinal microflorae have 
been found to promote colorectal cancer (CRC). For 
example, Enterotoxigenic B. fragilis (ETBF) and E. coli 
both carry PKS islands to promote toxin production, 
while F. nucleatum promotes CRC growth by stimulating 
inflammation and activating the β-catenin pathway [128, 
129].

Exo‑intestinal somatic cells
Some bacterial EVs can be absorbed into the blood and 
circulate to extraintestinal target cells, such as vascular 
endothelial cells, blood cells, and central neurons, caus-
ing diseases in cardiovascular, metabolic, and central 
nervous system (CNS) diseases [130]. Additionally, bac-
terial EVs can alter intestinal microecology and cause 
multi-system diseases. For instance, OMVs secreted by 
Bacteroides thetaiotaomicron (Bt) can be endocytosed 
and captured by intestinal epithelial cells through para-
cellular pathways and migrate to the submucosal and cir-
culatory systems [131, 132].

Intestinal microorganisms
The composition of the intestinal microbiota is not solely 
determined by competition among microorganisms but 
also by their ability to sense and adapt to the intestinal 
microenvironment. The viability and defense mecha-
nisms of microorganisms determine their ability to col-
onize and thrive in the gut. EVs derived from probiotic 
bacteria can support the growth and colonization of ben-
eficial microorganisms while inhibiting the growth and 
colonization of foreign microorganisms, which are typi-
cally pathogenic or opportunistic. These EVs are crucial 
for maintaining the stability of the intestinal microbiota. 
When the microbiota becomes dysbiotic, pathogenic 
EVs can inhibit the growth and colonization of probiot-
ics, alter the structure of the microbiota, and disrupt the 
homeostasis of the intestinal microecology.

Bacteria secrete EVs to deliver essential nutrients, 
functional genes, and enzymes with varying functions 
to the same flora. This enables the bacteria to enhance 
their viability and survive in the changing microenvi-
ronment of the intestine [133, 134]. Bifidobacterial EVs 
contain mucin-binding proteins that promote the colo-
nization of bifidobacteria in the intestinal mucosa [135]. 
Similarly, Bacteroides ovatus (B. ovatus) OMVs carry 
inulin-degrading enzymes, which can degrade inulin 
and produce nutrients to support the growth of other 

Bacteroides species that cannot utilize inulin [136]. 
Proteomic analysis has revealed that OMVs of B. fragi-
lis and Bacteroides thetaiotaomicron (B. thetaiotaomi-
cron) selectively package a large number of carbohydrate 
hydrolysis and proteolytic enzymes that can digest and 
absorb various polysaccharides. These OMVs provide 
nutrients for bacteria that cannot decompose polysac-
charides and help maintain the stability of the intestinal 
microecology [136, 137].

Furthermore, OMVs secreted by normal H. pylori have 
been found to promote biofilm formation in non-mem-
branous H. pylori strains, demonstrating their ability to 
enhance biofilm formation [136].

EVs secreted by bacteria have the ability to transfer 
virulence factors to competitive flora and host cells. This 
can result in structural damage or dysfunction of com-
petitive flora and host cells and even lead to cell death 
[138]. However, host cells and competing flora have cor-
responding defense mechanisms to resist the destructive 
effects of virulence factors, and they are constantly fight-
ing and evolving, with the winner surviving and the loser 
migrating [139].

For instance, OMVs isolated from the foodborne 
pathogen E.  coli O157:H7 have been shown to transfer 
virulence factors and other genetic material to recipi-
ent bacteria, such as E. coli JM109 or Salmonella enter-
ica serovar irritable bowel [140]. This transfer enhances 
the cytotoxicity and defense ability of recipient bacte-
ria [141]. Burkholderia cepacia (B. cepacia) have been 
shown to have strong antibacterial activity against A. 
baumannii, S. aureus, multidrug-resistant A. bauman-
nii, methicillin-resistant S. aureus, and fungal pathogens. 
Further chemical analysis of OMVs derived from Burk-
holderia tylanica reveals that they carry peptidoglycan 
hydrolase and proteolytic enzymes, as well as antibacte-
rial molecules, such as 4-hydroxy-2-alkylquinoline and 
rhamnolipid compounds. These molecules can affect 
ionophores, iron chelation, immunomodulation, and 
intercellular communication [142].

In addition, EVs secreted by bacteria can also carry 
defense factors, including virulence factors produced by 
various bacteria, toxic molecules in the environment, 
phage invasion, and host immune response. For instance, 
P. aeruginosa OMVs carry extracellular DNA, which not 
only mediates evasion of the host immune response but 
also promotes resistance to aminoglycoside antimicro-
bial agents [143]. Moreover, bacterial EVs are the pri-
mary means of HGT for spreading antibiotic resistance 
genes (ARGs), leading to reduced therapeutic efficiency 
of antibiotics and posing a serious threat to human 
health [144–146]. EVs can also transfer β-lactam resist-
ance genes into and out of bacterial species, enhancing 
resistance to β-lactam antibiotics in many bacteria [147, 
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148]. Additionally, the number of active bacteriophages is 
significantly reduced by about 90% after co-incubation of 
T4 bacteriophage and EVs, indicating that EVs can com-
bine irreversibly with T4 bacteriophages and thus signifi-
cantly reduce their numbers in the environment. This, in 
turn, reduces the chance of bacterial infection by bacte-
riophages, as measured by the number of plaque-forming 
units [149].

Intestinal environment
The contents of the intestine primarily include chyme, 
mucus, and bacteria. Mucus is the exocrine fluid secreted 
by host cells, while the chyme is the digested food by 
the GI tract and serves as a shared resource for both 
host and bacteria. Each bacterium competes for high-
quality resources and degrades harmful substances. 
Bacteria secrete EVs that carry digestive enzymes and 
transformed nutrients, which integrate into the intesti-
nal chemical environment, digest chyme, provide nutri-
ents, and transform harmful substances to bacteria, such 
as immune antibodies, antibiotics, toxic molecules, and 
phages, to improve the chemical environment for bac-
teria. Additionally, OMVs contain numerous enzymes 
that can degrade biological macromolecules. Therefore, 
when macromolecular substances are present in the liv-
ing environment of bacteria, the release of OMVs can 
degrade them, enabling the bacteria to absorb and uti-
lize these nutrients effectively [5, 27]. Secondly, OMVs 
have the ability to adsorb and bind antibiotics, thereby 
reducing their concentration, carrying antibiotic hydro-
lase, degrading antibiotics, and horizontally transferring 
ARGs to enhance the antibiotic resistance of bacteria [5, 
7]. For instance, EVs released from S. Aureus under the 
stress of ampicillin contain a large number of proteases 
that can degrade β-lactam antibiotics and neutralize 
them in the environment [58]. Furthermore, EVs secreted 
by Bacteroides spp. containing β-lactamase can hydrolyze 
β-lactam antibiotics, reduce the concentration of antibi-
otics in the intestinal microenvironment, and improve 
the survival rate of intestinal symbiotic bacteria [150]. In 
a study, it has been reported that polymyxin treatment 
can induce sewage bacterial communities to produce a 
large number of EVs in the real environment, and these 
EVs can potentially reduce the concentration of antibi-
otics in water [151]. It has also been observed that poly-
myxin B and colistin, which are polypeptide antibiotics, 
can induce E. coli to release EVs that can adsorb anti-
microbial peptides, thus eliminating the killing effect of 
these peptides on bacteria, possibly due to the binding of 
LPS carried by EVs to antimicrobial peptides [149, 152, 
153].

Although excreted feces still contain a significant num-
ber of intestinal bacterial EVs, these EVs can remain 

stable and active in  vitro. They carry a diverse range of 
enzymes and active molecules that degrade intestinal 
chyme, which can alter the characteristics of intestinal 
contents or feces, stimulate the mechanical movement of 
the intestine, and influence defecation patterns. In gen-
eral, probiotics and their EVs can stimulate GI motility, 
improve stool characteristics, and promote regular bowel 
movements. In cases of dysbiosis, pathogenic bacte-
rial EVs can weaken GI motility, result in dry stools, and 
cause constipation or diarrhea.

Potential application of bacterial EVs in GI
Bacterial EVs play a wide range of roles in the GI sys-
tem. Although still in the basic research stage, bacte-
rial EVs exhibit greater diversity and functionality than 
somatic EVs. They possess strong immunogenicity and 
can be conveniently detected in feces, urine, blood, and 
other bodily fluids. Obtaining bacterial EVs is relatively 
easy, thanks to mature bacterial culture and strain isola-
tion technologies. Moreover, ideal EVs can be obtained 
through regulation. Bacterial EVs hold immense potential 
in disease diagnosis, vaccine or immune adjuvant devel-
opment, intestinal microecology maintenance, and drug 
delivery. Currently, research technology presents the big-
gest obstacle to realizing this potential [154, 155]. How-
ever, as EV research technology matures, bacterial EVs 
will likely demonstrate even greater application potential 
(Fig. 4).

Diagnostic biomarkers
By detecting changes in bacterial EVs in bodily flu-
ids, such as blood, feces, urine, and others, we can gain 
insight into the composition of the gut microbiota and 
identify imbalances in a timely manner. These bacterial 
EVs carry a large number of specific biological macro-
molecules that serve as the basis for the directional rec-
ognition and immunogenicity of bacterial EVs and are 
also key molecules in the development of intestinal and 
extraintestinal diseases. Discovering new biomarkers for 
the diagnosis of GI and extraintestinal diseases, as well as 
monitoring disease progression and treatment efficacy, is 
of great importance [156, 157]. For example, the levels of 
antibacterial EV antibodies in the blood of patients with 
bronchial asthma, chronic obstructive pulmonary disease 
(COPD), and lung cancer are found to be significantly 
higher than those of healthy controls, indicating that 
measuring EVs in these patients may serve as a diagnos-
tic biomarker [158]. It is believed that in the near future, 
specific components of bacterial EVs in human bodily 
fluids can be identified to aid in the diagnosis of intestinal 
diseases.
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Therapeutics
Bacterial EVs have a significant impact on host cells and 
intestinal microorganisms, rendering them a potential 
therapeutic tool for regulating gut microbiota imbalances 
and improving immune function. By modulating the bal-
ance of the gut microbiota and maintaining intestinal 
immune barriers, bacterial EVs can indirectly improve 
the intestinal microenvironment, protect the intestinal 
epithelial and mucus barriers, and enhance intestinal 
digestion, absorption, and defecation functions.

Regulation of flora disorder
Dysbiosis is considered to be the primary factor or a 
concurrent change in the development of various dis-
eases, and the regulation of gut microbiota is becoming 
a key aspect of disease treatment. Traditionally, anti-
biotics, oral probiotics, and other methods have been 
used to control pathogenic bacteria. However, in some 
patients, these methods are ineffective and may even 

result in antibiotic-associated diarrhea. Fecal microbi-
ota transplantation (FMT) has been successful in treat-
ing refractory diarrhea [159]. Compared to the direct 
administration of microbial agents, using bacterial EVs 
as a therapeutic approach has several advantages, such 
as the ability to cross the intestinal barrier, low toxicity, 
high plasticity, and specificity [155]. The future direction 
is to use EVs to control bacteria and maintain the homeo-
stasis of gut microbiota through EVs, which can be more 
accurate and effective. The introduction of EVs from pro-
biotics can not only inhibit the reproduction and coloni-
zation of pathogenic bacteria but also provide nutrients 
for normal gut microbiota and resist harmful substances, 
such as reactive oxygen species, antibiotics, and antimi-
crobial peptides [53].

Regulation of immune function
Bacterial EVs are known to carry specific immuno-
gens and PAMP molecules that are related to the parent 

Fig. 4 The advantages and challenges of bacterial‑derived outer membrane vesicles. OMV possess inherent adjuvanticity
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bacteria. They have strong immunogenicity and immune 
cell recognition ability, which makes them suitable for 
developing bacterial outer membrane vesicle vaccines or 
immune adjuvants [85, 93, 160]. For example, some coun-
tries, such as Cuba, Norway, New Zealand, and the Neth-
erlands, have developed monovalent vaccines against 
local prevalent strains of group B meningococcal (MenB) 
using detergent-extracted outer membrane vesicles 
(dOMVs) as one of the primary antigens [161–164]. The 
process of dOMV detergent extraction reduces LPS/lipo-
protein content and hence OMV endotoxicity. It can also 
induce the production of bactericidal antibodies against 
cell-surface outer-membrane proteins (OMPs) [165]. 
Based on this, a polyvalent MenB vaccine (MenB-4C) was 
developed by Novartis (China) Biomedical Research Co. 
in 2013. This vaccine contains dOMV and three recom-
binant proteins, and it can cover 66–91% of MenB strains 
worldwide [165–167]. EVs are known to carry a sig-
nificant amount of LPS, which not only acts as a potent 
immunogen but also generates a strong heat source. LPS 
is a key component of virulence factors, which can cause 
damage to host cells, trigger immune cell inflammation, 
and even lead to death [168, 169]. However, lysozyme 
can bind strongly to LPS, and the complex formed by 
lysozyme can help to inhibit inflammatory responses. As 
a result, OMVs can be detoxified by lysozyme [170, 171].

Currently, OMVs are treated with detergents, such as 
sodium deoxycholate, to remove a large amount of LPS. 
However, this process can also cause the loss of some 
immunogenic lipoproteins [172]. To address this issue, 
researchers have introduced OMVs of Neisseria menin-
gitidis (Nm) LpxL 1 mutant gene, which converts lipid 
A from six fatty acyl chains to five fatty acyl chains. This 
modification has been shown to reduce pyrogen toxicity 
to the host while retaining moderate immunogenicity of 
LPS, thus ensuring the effectiveness and safety of vaccine 
products. This approach is still in the clinical research 
Stage [173, 174]. In other studies, OMV vaccines have 
been developed against Mycobacterium tuberculosis (M. 
tuberculosis) and Staphylococcus aureus, which produce 
protective cellular and humoral immune responses in 
mice [175, 176]. Furthermore, vaccination with S. aureus 
OMVs has been shown to protect against active S. aureus 
infection [177]. Currently, OMV vaccines against other 
bacteria, including H. pylori, V. cholerae, and Klebsiella 
pneumoniae (K. pneumoniae), and genetically engi-
neered Bacteroides OMV vaccines are in the late stages 
of research and development [115, 178, 179].

Another promising approach in vaccine develop-
ment involves mimicking the mechanism of OMVs and 
incorporating specific immunogens of pathogenic bac-
teria into the ideal OMV vector [180–182]. For example, 
non-pathogenic E. coli OMVs are engineered to express 

Streptococcus pneumoniae (S. pneumoniae) surface gly-
cans. These OMVs can generate immune responses 
comparable to commercially available Streptococcus 
pneumoniae vaccines [183].

To address bacterial resistance, the development of 
bacterial vaccines should focus on innovative solutions. 
In one study, bovine serum albumin (BSA) is encapsu-
lated with OMVs to create a BSA-OMV nano-vaccine. 
This approach significantly improves the survival rate of 
mice infected with a lethal dose of carbapenem-resistant 
Klebsiella pneumoniae (CRKP) [184].

Drug delivery
Bacterial EVs possess stability and targetability, allowing 
them to recognize specific molecules and cells with an 
EPR effect. As non-toxic drug carriers with good human 
compatibility, bacterial EVs can improve the efficacy of 
drugs [155, 185, 186]. To prepare bacterial EVs for drug 
delivery, screening of suitable bacterial EVs should be 
done first and then transformed and modified to rec-
ognize and load drugs or bioactive substances. Specific 
PAMP molecules should be present on the surface of 
vector EVs for directionally recognizing target cells and 
introducing drugs and bioactive substances. Synthetic 
nanomaterial carriers lack the ability to replicate the sur-
face features of vesicles, lack intercellular interaction, and 
lack targeting recognition ability [187]. OMVs derived 
from B. fragilis have the potential to be used as drug car-
riers for the treatment of intestinal diseases [188]. EVs 
secreted by Bacillus subtilis can transport across the GI 
epithelium, which is useful for food, nutrition, health care 
products, and clinical treatment [189]. [190]. Combining 
OMVs with miRNA can be used to treat cancer, such as 
intestinal cancer, where OMVs extracted from intesti-
nal bacteria can encapsulate anti-tumor miRNA and be 
delivered orally to cancer tissues in the GI tract [190]. 
The combination of OMVs and miRNA can effectively 
inhibit metastatic tumor cells. E. coli OMVs encapsulat-
ing mediating pore silica and combined with 5-fluoro-
uracil can enhance the drug concentration at a colon part 
and release the drug centrally in the TME, resulting in 
reduced systemic adverse reactions and improved treat-
ment of CRC [191]. Levofloxacin-loaded A. baumannii 
OMVs can effectively invade E. coli, P. aeruginosa, and 
A. baumannii, kill E. coli, and produce good therapeutic 
effects in a mouse intestinal E. coli infection model [192]. 
Exogenous siRNA carried by cellular EVs can inhibit 
oncogene expression by targeting mRNA. Synthetic 
nanocarriers have made some progress in silencing onco-
gene expression with exogenous siRNA, and bacterial 
EVs are under research for this purpose [123, 193]. OMVs 
can also be adapted for genetic engineering and chemical 
engineering methods similar to eukaryotic exosomes for 
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targeting delivery [194–199]. Targeting intestinal tissue 
delivery of OMVs is particularly meaningful for treating 
IBD [200].

Conclusions
The intestinal flora, which has coexisted with humans 
for hundreds of millions of years, is closely intertwined 
with human health and disease. The relationship between 
humans and microorganisms will continue to shape 
human health and disease in the future. Therefore, we 
must expand our research and knowledge of microor-
ganisms and comprehend their evolution and variations, 
as this is the path towards ensuring human survival 
indefinitely.

EVs derived from somatic cells have shown promising 
results in treating GI diseases. In particular, EVs derived 
from intestinal epithelial cells, macrophages, and mesen-
chymal stem cells are currently undergoing clinical trials. 
However, bacterial EVs have even more diverse types and 
functions, stronger immunogenicity, and greater plastic-
ity than human-derived EVs. OMVs are natural immune 
adjuvants that play a critical role in vaccine production, 
infection prevention and control, tumor treatment, and 
drug delivery. Bacterial EVs offer several advantages in 
maintaining intestinal microecology, regulating immu-
nity, and serving as drug carriers, making them a prom-
ising candidate for a broad range of applications (Fig. 4).

However, there are several challenges that need to be 
addressed: (1) The biological mechanisms and structural 
components of bacterial EVs are not fully understood, 
necessitating further research. (2) Identifying OMV 
components is complex, and the functions of various 
components need to be determined. (3) Techniques for 
extracting, identifying, shaping, and preserving EVs are 
not yet ideal and can limit the development of related 
clinical applications. (4) Further research is required to 
mitigate the adverse effects of reducing the activity and 
toxicity of OMV surface antigens.

To overcome these obstacles, the development of 
small-molecule inhibitors or novel strains with bacterial 
toxin activity knocked out on the surface of OMV may be 
an effective strategy for reducing the immunogenicity of 
OMVs. It is reasonable to believe that with the advance-
ment of technology, these challenges will be overcome, 
and OMV-based nanotechnology will develop into a 
powerful toolkit for intestinal targeted delivery, GI dis-
ease diagnosis, treatment, and other related fields.
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