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Abstract
Background Severe coronavirus disease 2019 (COVID-19) is associated with systemic hyper-inflammation. An 
adaptive interaction between gut microbiota and host immune systems is important for intestinal homeostasis and 
systemic immune regulation. The association of gut microbial composition and functions with COVID-19 disease 
severity is sparse, especially in India. We analysed faecal microbial diversity and abundances in a cohort of Indian 
COVID-19 patients to identify key signatures in the gut microbial ecology in patients with severe COVID-19 disease 
as well as in response to different therapies. The composition of the gut microbiome was characterized using 16Sr 
RNA gene sequences of genomic DNA extracted from faecal samples of 52 COVID-19 patients. Metabolic pathways 
across the groups were predicted using PICRUSt2. All statistical analyses were done using Vegan in the R environment. 
Plasma cytokine abundance at recruitment was measured in a multiplex assay.

Results The gut microbiome composition of mild and severe patients was found to be significantly different. 
Immunomodulatory commensals, viz. Lachnospiraceae family members and Bifidobacteria producing butyrate 
and short-chain fatty acids (SCFAs), were under represented in patients with severe COVID-19, with an increased 
abundance of opportunistic pathogens like Eggerthella. The higher abundance of Lachnoclostridium in severe disease 
was reduced in response to convalescent plasma therapy. Specific microbial genera showed distinctive trends in 
enriched metabolic pathways, strong correlations with blood plasma cytokine levels, and associative link to disease 
outcomes.
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Introduction
The novel coronavirus SARS-CoV-2 infection that led 
to the coronavirus disease of 2019 or COVID-19, led to 
a pandemic and a devastating public health crisis [1, 2]. 
With time, emerging variants of the virus have resulted 
in successive waves of community transmission world-
wide [3, 4], causing close to 630  million infections that 
have led to approximately 6.5  million deaths till date. 
The unfavourable outcomes encountered in a fraction of 
patients mostly follow an acute respiratory distress syn-
drome (ARDS), which in turn follows systemic hyper-
inflammation with a cytokine storm [2, 5]. Despite a lot 
of studies on systemic hyper-inflammation and its link 
to severe respiratory disease in some patients, the heter-
ogenous immunopathology of severe COVID-19 and the 
indeterminacy of susceptibility to severe disease remain 
enigmatic [6–9]. Systemic immunosuppression using 
corticosteroids has been proven to be the most successful 
therapy [10, 11]. Anti-cytokine therapy targeting inter-
leukin-6 is also effective in some, but not in all severe 
COVID-19 patients [12, 13]. Antiviral therapies using 
small molecules as well as combinations of antibodies 
have also shown limited efficacy [14–16]. Thus, meticu-
lous charting of the systemic hyper-inflammation and the 
probable host-intrinsic factors playing a differential role 
in driving susceptibility to severity are of major impor-
tance. Moreover, a lot of variation in disease susceptibil-
ity as well as disease outcomes in different parts of the 
world in different cohorts of patients perhaps also points 
to demographic and environmental factors that shape 
individual host responses [17].

A crucial dimension of human heterogeneity in terms 
of disease risk and resilience is attributed to the commen-
sal microbiota in different body sites [18]. The microbial 
ecologies of the human body have been explored in great 
detail in myriad noncommunicable and communicable 
diseases [19, 20]. With relevance to communicable infec-
tions, involvement of the gut microbiome in susceptibility 
to infections has been documented in bacterial infec-
tions like Salmonellosis, parasitic infections like malaria, 
as well as viral infections like influenza and respiratory 
syncytial virus [21–24] In this context, the gut microbial 
influence on systemic immune mechanisms has been 
explored in detail in different contexts [25]. Moreover, 
significant interest is also driven by the putative micro-
biome-gut-lung axis [26]. Efforts have already been put 
in to explore the associative link between gut microbial 
dysbiosis and risk-resilience balance in the context of 
COVID-19 [27–29].

In the present study, we analysed faecal microbiota 
richness, diversity, and abundance in a cohort of Indian 
COVID-19 patients and identified gut microbial signa-
tures in patients with severe COVID-19 disease and their 
correlation with circulating cytokine abundance, as well 
as gut microbial changes in response to convalescent 
plasma therapy (CPT) and linked to disease outcomes.

Results
Gut microbiota dysbiosis and disease severity in patients 
with COVID-19
Demographic parameters, co-morbid clinical condi-
tions, and a few baseline clinical parameters are pro-
vided in supplementary Table 1. Given the observations 
that SARS-CoV-2 infection may affectthe taxonomic 
and functional attributes of the gut microbiome, we first 
investigated the effect of different disease severity con-
ditions on the faecal microbiomeof patients at the base-
line level.Analysis of the data obtained from sequencing 
of the 16 S rRNA genes generated a total of 24, 590, 191 
reads from 84 samples, with a minimum of 119, 168 and a 
maximum 750, 883 reads after quality filtering. The aver-
age number of reads generated was found to be 292, 740 
(supplementary Table 2).

Since some features with very small counts in very few 
samples are likely due to sequencing errors or low-level 
contaminations, hence we have set the filtering criteria 
at a prevalence of 10%. The sequencing depth revealed a 
total of 20 phyla, 34 classes, 89 orders, 172 families, and 
431 genera among the 84 samples. (Fig. 1A). The micro-
bial compositionof each patient is represented in supple-
mentary Table  3. At the phylum level it was observed 
that in case of severe COVID-19 patients, relative abun-
dance of Firmicutes was the highest (39.36%) followed 
by Actinobacteria (33.89%), Proteobacteria (15.15%), 
Bacteroides (11.08%), Cyanobacteria (0.35%) and Desul-
fobacterota (0.14%). The relative abundance for each of 
the 7 Mild patients had a higher abundance of Firmicutes 
(43.03%), Bacteroidota (17.59%) and Cyanobacteria 
(2.3%), while showing considerable lower abundance of 
Proteobacteria (3.38%).Considering the inconsistency in 
sample size (Mild = 7, Severe covid = 77) these results may 
not reflect the actual landscape of microbial composi-
tion in COVID-19 patients, with varying disease severity. 
The relative abundance of these top six phylum in each 
sample belonging to severe and mild COVID-19 patients 
(n = 84) is represented in (Fig.  1B). At the baseline 
(time-point 1 or T1), the alpha diversity index (, Chao1, 
Shannon, Simpson and Faith PD) was calculated and 

Conclusion Our study indicates that, along with SARS-CoV-2, a dysbiotic gut microbial community may also play an 
important role in COVID-19 severity through modulation of host immune responses.
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significance was tested among the two groups as per Sha-
piro-Wilk test It was found that Chao1 (p-value = 0.02), 
Shannon (p-value = 0.004), Simpson (p-value = 0.01) 
were all significantly different between severe and mild 
COVID-19 patients), whereas, Faith PD (p > 0.05) was 
found to be non-significant (Fig.  1C, supplementary 
Table  4). In the case of beta diversity, it was observed 
that the Bray Curtis distance matrices showed a high 
significance difference between two groups at T1. Both 

the groups are represented on the ordination plot with a 
variance of 26.3% (Axis1) and 16.4% (Axis2) respectively 
(Fig. 1D, supplementary Table 5). Statistical significance 
of variance was calculated using permutational multivari-
ate analysis of variance (PERMANOVA), which reflected 
that severe and mild COVID-19 patients had variance 
among them (R2 = 0.0652, p-value = 0.002).

We extended our analysis at the genus level, to iden-
tify differentially abundant bacterial genera between the 

Fig. 1 Taxonomic composition and microbial diversity in Indian patients with COVID-19
(A) Heat tree representing the organization of taxa from phylum through genus level. On the lower right-hand side is the colour scale. Each node repre-
sents a particular taxon used to classify the OTU whereas the edges represents where it fits in the taxonomy hierarchy. The nodes diameter is proportional 
to the number of OTUs and the width of the edge is equal to the number of reads. (B) Phylum abundance bar plot showing the relative abundance of 
six different phylum (Firmicutes, Proteobacteria, Bacteroides, Actinobacteria, Cyanobacteria and Desulfobacterota) in severe and Mild subjects. (C) Alpha 
diversity was found to be significant for Chao index (p-value = 0.02), Shannon index (p-value = 0.004) and Simpson index (p-value = 0.01) whearas Faith PD 
(p-value > 0.05) was non-significant at the baseline level. The box indicates the interquartile range (IQR). The median value is represented as a line within 
the box and whiskers extend to the extreme value that is within 1.5*IQR. (D) Beta diversity at baseline level:Principal coordinate analysis plot (PcoA) of 
the gut microbiome of severe and mild patients at the baseline level. The blue dots represent subjects with severe disease and yellow dots represent 
mild subjects. Both the groups represented on the ordination plot with a variance of 26.3% (Axis1) and 16.4% (Axis2) respectively. The statistical signifi-
cance of variance between mild and severe patients was calculated using Permutational multivariate analysis of variance (PERMANOVA) (R2 = 0.0652, 
P-value = 0.002)
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mild and severe diseasegroups. On performing FDR cor-
rection 15 genera were significantly different between 
the two groups. LEfSe analysis to compare the effect 
size between mild and severe COVID-19 groups yielded 
a histogram of the LDA scores which was computed 
for features that showed differential relative abundance 
between the two groups (Corrected p-value thresh-
old = 0.1) (Fig.  2A) Six gut commensal genera belonging 
to Lachnospiraceae family (phylum Firmicutes) and the 
genus Bifidobacterium (phylum Actinobacteriota) were 
significantly enriched in patients with mild COVID-19 
disease after FDR correction, viz. Agathobacter, Blautia, 
Fusicatenibacter, Dorea, Eubacterium_halli_group and 
Eubacterium_eligens_group (p-value < 0.05, FDR cor-
rected). (Figures  2B and 3A, Supplementary Table  6). 
Eubacterium_halli_group, Eubacterium_eligens_group, 
Dorea and Blautia are well-known producers of the 
anti-inflammatory short-chain fatty acid (SCFA) butyr-
ate, which is the primary metabolic fuel for colonocytes 
and important for maintaining colonic epithelial integrity 

[30]. Hence, depletion of these in severe COVID-19 
patients may be relevant to disease pathogenesis. Apart 
from butyrate, the production of other SCFAs is medi-
ated by bacteria such as Bifidobacterium species (belong-
ing to the Phylum Actinobacteria) that produce acetate 
and lactate during carbohydrate fermentation.

On the other hand, opportunistic pathogens, such 
as Eggerthella, was found to be significantly enriched 
in severe patients (p < 0.05, FDR corrected) (Fig.  3B) 
in addition to Enterococcus and Staphylococcus which 
were more abundant in the severe group (p < 0.05, Mann 
Whitney U test) (Supplementary Fig. 1) but not statisti-
cally significant after FDR correction. Staphylococcus is 
a virulent pathogen that is currently the most common 
cause of infection in hospitalized patients [31].Entero-
cocci are not detrimental on limited gut abundance ─ 
however transmission to other parts of the body may 
cause lethal infection [32]. Several studies have shown 
that the increased gut permeability in rheumatoid arthri-
tis patients as well as Th17 activation in a murine colitis 

Fig. 2 Differential abundance of gut microbiome in Mild and severe COVID-19 patients from India
(A) LEfSe analysis identified the most differentially abundant genera (n = 15). LDA scores > 2 are shown. – in the figure is an unidentified genus from the 
family Lachnospiraceae. (B) Among the 15 genera, Lachnospiraceae family dominates the list with (n = 6) genera(p-value < 0.05, Mann Whitney U test, FDR 
corrected) The rows represent the mean relative abundance of each genus whereas the column stands for the mean relative abundance(%) of the two 
groups. Heatmap showing the bacterial composition (Lachnospiraceae family) of different COVID-19 patients (mild and severe COVID-19) at the genus 
level. The mean relative abundance of each bacterial genus is represented by the colour of the scale ranging from red (high mean relative abundance) 
to blue (low mean relative abundance) as depicted on the right side of the pheatmap. All genera belonging to Lachnospiraceae family were enriched in 
mild COVID-19 patients as compared to the severe population
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model are associated with an increased abundance of 
Eggerthella in the gut microbiota [33–35].

Since members of the Lachnospiraceae family were 
found to be the most differentially relatively abundant 
taxa between patients with mild and severe COVID-19, 
we compared the diversity in the Lachnospiraceae family 
between two groups of COVID-19 patients. Our analysis 
revealed that, Shannon (p < 0.002) and Chao (p < 0.0005) 
indices were statistically more prevelant in the patients 
with mild disease, whereas Simpson diversity did not 
show any statistical difference in richness and evenness 
between the two groups of patients (p > 0.05) (Fig.  3C, 
supplementary Table 7).

Then, to gather some insight on the association 
between the differentially abundant genera (n = 41), we 
constructed the co-occurrence networks (Pearson’s cor-
relation, with a cut-off R ≥ 0.7) and compared it between 
patients with mild and severe COVID-19. In patients with 
mild disease, the genus Dorea from the Lachnospiraceae 

family, which is a known producer of the SCFAs and 
butyrate [36], was found to be negatively correlated with 
the genera Enhydrobacter (Phylum Alphaproteobacteria) 
and Fusicatenibacter (Phylum Firmicutes). Besides these, 
the genera Allisonella and Megamonas also showed nega-
tive correlations. From these associations, we can com-
pute that there is a strong negative correlation between 
butyrate and acetate-producing commensal gut bacte-
ria and non-indigenous pathogens. Rest of the genera 
showed strong positive associations between them (Sup-
plementary Fig.  2A and 2B, supplementary Table  8). In 
case of patients with severe COVID-19 disease, two cor-
relative clusters were formed. The first cluster consists 
of 16 genera which were positively correlated with each 
other. The second cluster was formed by  Enhydrobacter 
and Ochrobactrum (both belonging to Phylum Proteo-
bacteria) showing a strong positive correlation. Both are 
opportunistic pathogensin the human gutcausing severe 
infections in immunocompetent hosts [37]. From our 

Fig. 3 Relative abundanceof differentially abundant genera between Mild and severe COVID-19 patients from India
(A) Box plots showing the relative abundance (%) of 6 differentially abundant generain mild and severe COVID-19 patients from the Lachnospiraceae 
family (p-value < 0.05, Mann Whitney U test, FDR corrected). The relative abundance (%) of genus Bifidobacterium was also enriched in mild patients (p-
value < 0.01, Mann Whitney U test, FDR corrected). All the above-mentioned commensal gut microbes were significantly high in mild patients than in the 
severe disease group. (B) Box plots showing the relative abundance (%) of the opportunistic pathogen Eggerthella statistically different between the two 
groups (p-value < 0.05, Mann Whitney U test, FDR corrected). (C) Alpha diversity in the mild and severe COVID-19 patientswas computed. In Lachnospira-
ceae family diversity was found to be significant for Shannon index (p-value = 0.0026, Mann Whitney U test), Chao index (p-value = 0.0005 Mann Whitney 
U test), and non-significant for Simpson index (p-value = 0.074, Mann Whitney U test). The box indicates the interquartile range (IQR). The median value is 
represented as a line within the box and whiskers extend to the extreme value that is within 1.5*IQR

 



Page 6 of 17Talukdar et al. Gut Pathogens           (2023) 15:22 

correlative analysis within the microbiome, we can infer 
that pathogenic microbes and beneficial gut bacteria have 
strong positive associations within themselves (Fig.  4A 
and B, supplementary Table 9).

Genomic repertoire of the gut microbiota found 
depleted in severe COVID-19 is enriched for potentially 
immunomodulatory metabolic pathways
Next, the metabolic capacity of the microbiome was 
inferred using microbial diversity obtained from the 
16  S rRNA gene amplicon data by PICRUSt2 software 
(supplementary Table 10). The metabolic pathways of the 
gut microbiome were compared between different popu-
lations. The analysis revealed the differential abundance 

of 23 metabolic pathways inferred from the gut metage-
nome betweenmild and severe COVID-19 patients 
(p-value < 0.05, Mann Whitney U test), however, these 
pathways were not significantly different after computing 
the FDR correction using Benjamini-Hochberg method 
(Fig.  5, supplementary Tables  10 and supplementary 
Table 11). Among these pathways, twelve were found to 
be highly enriched for the mild disease.

Mean relative abundance of the L-histidine degrada-
tion II pathway was highly enriched in the mild COVID-
19 population(mean = 3.46 in mild disease, mean = 0.98 
in severe disease, p-value < 0.05, Mann Whitney U 
test). Catabolism of this amino acid yields glutamate 
and decarboxylation of histidine produces histamine. 

Fig. 4 Correlation between different gut commensals and opportunistic pathogens in severe COVID-19 patients
Co-occurrence among each pair of genera at T1time point in the gut microbiome was calculated using Pearson’s correlation coefficient (r). The relative 
abundance of the genera was used for calculation of correlation network. (A) Heatmap showing the correlation matrix between the different gut bacteria 
in patients with severe COVID-19. Red squares represent strong positive correlation blue squares represent strong negative correlation and white square 
represent non-significant correlations. (B) Co-occurrence network with threshold set to r ≥ 0.7 or r ≤ -0.7, p < 0.05 between the differentgenerain the 
severe COVID-19 (n = 44) group. The black lines (edges) represent strong positive interaction between the genera (signified by nodes)
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Histamine is responsible for inflammation in allergic 
reactions in general, but bacteria-metabolized histamine 
has been shown to inhibit the production of pro-inflam-
matory cytokines such as TNF-α  in vivo and IL-1 and 
IL-2 in vitro [38, 39], in addition to preventing intestinal 
bacterial translocation.

Several amino acid metabolism pathways were also 
found to be highin patients with mild disease. The mean 
relative abundance of L-glutamate and L-glutamine bio-
synthesis (mean was 1.11 forsevere COVID-19, 2.06 for 
mild disease) and L-valine biosynthesis (mean was 1.11 
forsevere COVID-19, 1.99 for mild disease) pathways 
were found to be under-represented in patients with 
severe disease (p-value < 0.05, Mann Whitney U test). In 
fact, various amino acids produced from the microbial 
protein fermentation pathways can serve as precursors 
for SCFA synthesis. Amino acids that are metabolized 
to the butyrate by anaerobic bacteria include glutamate, 
threonine, and lysine [40].

Cobalamin B12 biosynthesis pathways (I and II) were 
upregulated in the mild COVID-19 patients (mean 2.35, 
2.95 in mild and 1.08, 1.02 in severe disease for I and II 
respectively, p-value < 0.05). Vitamin B12 serves as a co-
factor for nucleotide and amino acid biosynthesis and 

acts as a metabolic substrate for the gut microbiome. 
Besides, it also provides protection against stroke in 
selected patients [41].

Association of faecal microbial entities with systemic 
hyper-inflammation in COVID-19 patients
The systemic hyper-inflammation characterized by a 
differential abundance of inflammatory cytokines in 
response to COVID-19 infection distinguishes patients 
with mild symptomsfrom severe [42]. In patients with 
severe COVID-19, a systemic hyper-inflammatory state 
is encountered, associated with a cytokine storm, i.e., the 
large abundance of pro-inflammatory cytokines in circu-
lation [43, 44]. This in turn may lead to septic shock and 
multiorgan failure [45, 46]. From our previous analyses 
it was apparent that gut microbiome plays an important 
role in disease severity and several bacteria are associated 
with disease severity. To explore any plausible association 
of the microbial dysbiosis with the nature of the cytokine 
storm encountered in the severe COVID-19 patients in 
our cohort, we ran a set of correlative analyses between 
the gut genera (both commensal and pathogenic)appar-
ent from the faecal DNA amplicon sequencing data and 
plasma concentrations of 36 cytokines.

Fig. 5 Heatmap of bacterial gene functional prediction using the latest PICRUSt2 algorithm from the faecal samples of Indian COVID-19 patients
Using the amplicon sequence variants (ASV) and the biome table generated from QIIME2 database as input, PICRUSt2 predicted the KEGG-level path-
ways. The relative abundance was then calculated from the observed abundance of each pathway in each sample. In mild and severe COVID-19 patients 
a total of 23 metabolic pathways were statistically significant between the groups (p-value < 0.05, Mann Whitney U test). Among these 23 metabolic 
pathways, 12 were found to be highly upregulated in mild patients (p-value < 0.05, Mann Whitney U test)
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To explore the plausible association of relative abun-
dance of faecal microbial entities with absolute plasma 
abundance (pg/ml) of 36 cytokines we constructed a co-
occurrence network (Spearman’s correlation, with a cut-
off R ≥ 0.5)and compared between patients with either 
mild orsevere COVID-19. IL-4, IL-9, IL-10, and M-CSF 
were discovered to be positively associated with Lachno-
spira, Lachnospiraceae_UCG_004, Eubacterium, Agatho-
bacter, Enhydrobacter, and Fusicatenibacter (Fig.  6A, 
supplementary Table 12). On the other hand, pro-inflam-
matory cytokines like IL-6, IL-8, IL-18, G-CSF, TNF-α 
and TNF-β were also found to be strongly correlated with 
several gut microbes, perhaps pointing to a feed-forward 
regulation. G-CSF (Granulocyte colony stimulating fac-
tor) or granulocyte production cytokine was found to be 
positively associated with Agathobacter. G-CSF, which is 
a growth factor that stimulates the bone marrow to pro-
duce white blood cells to reduce the risk of infection in 
the body, was correlated with the butyrate producing 
gut bacteria, which in turn is beneficial for reducing the 
growth of non-indigenouspathogens [47, 48].

We then checked forthe association of cytokines and 
gut microbes in the severe COVID-19patients. However, 
with correlation cut-off value of 0.5 we found that only 

the genus Enterococcus showed a positive correlation 
with the CC chemokine CTACK while none of the other 
associations crossed this cut-off R value(data not shown), 
supplementary Table 13). Thus, we extended our analysis 
by loweringthe threshold parameter to 0.4 and found sig-
nificant positive associations which are represented in a 
circos plot in Fig. 6B.Positive correlations were observed 
between Fusicatenibacter, Bifidobacterium and Eubac-
terium_hallii with PDGF-bb, Blautia and Eubacterium 
with HGF, Enterococcus with CTACK, FGF basic, IL-1a 
IL-1b and IL-17  A, Eggerthella with SCF and Eubacte-
rium with IL-6.

Gut dysbiosis in response to therapy in severe COVID-19 
patients
In a fraction of the severe COVID-19 patients (n = 32) 
faecal samples were collected 7 days post enrolment 
(time-point 2 or T2) and faecal DNA was analysed by 16s 
rRNA amplicon sequencing. We classified the patients 
based on whether they did or did not receive major 
antibiotic pharmacotherapy with or without CPT in the 
intervening period of one week. As reported earlier, CPT 
was given to the patients, randomized into the interven-
tion arm, as two doses of 200ml of convalescent plasma 

Fig. 6 Association between gut bacteria and plasma cytokine levels in mild and severe patients
(A) The co-occurrence among the significantly different genera and cytokines was calculated using Spearman’s rank correlation coefficient (ρ) in Mild 
patients.The relative abundance of the genera and log fold change (absolute values) were used for the calculation and threshold was set to r > 0.5. All 
calculations were done using R package, function cor(). The nodes represent genera and cytokines which are colourencoded. Green nodes represent 
cytokines and the blue nodes represent genera. The edges represent strong positive interaction between cytokine and genera. (B) Circos plot represent-
ing the co-occurrence among the significantly different genera and cytokinesin severe COVID-19 patients calculated using Spearman’s rank correlation 
coefficient (ρ) with the threshold set to r > 0.4. Only positive associations crossed the threshold cut-off and are represented in green where a darker shade 
represents stronger correlation.
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on two consecutive days─ the first dose being on the day 
of recruitment (T1 sampling) [49]. Plasma from donors 
who have recovered from COVID-19 contains neutraliz-
ing antibodies against SARS-CoV-2. In addition, a promi-
nent anti-inflammatory effect of convalescent plasma 
was also reported earlier, presumably due to diverse anti-
inflammatory proteins circulating in the blood in the 
convalescence period [50].

We checked for changes in the gut microbial com-
position of severe COVID-19 patients before taking 
convalescent plasma (T1 time point, n = 15) and after 
administration of plasma therapy (T2 time point, n = 15). 
Due to small sample size FDR correction, did not yield 
any genus to be significantly altered between the two 
groups (supplementary Table  14). However, the mean 
relative abundance (%) of the genus Lachnoclostridium 
was significantly lower in the T2 time-point, i.e., post-
CPT while genus Kocuria (phylum Actinobacteriota) 
and genus Pannonibacter (Phylum Proteobacteria) were 
more abundant after CPT (p-value < 0.05, Mann Whitney 
U test) (Supplementary Fig. 3A supplementary Table 14). 
Lachnoclostridium is known to negatively influence the 
circulating levels of acetate, besides being involved in the 
biosynthesis of detrimental lipid compounds [51]. Not 
much is known about the clinical significance and patho-
physiology of genus Pannonibacter and Kocuriain the 
human gut, hence further research is needed to interpret 
these data.

We next analysed the effects of different thera-
pies administered to patients with severe COVID-
19 disease to understand the alteration of gut 
microbial composition. All the severe patients ana-
lyzed received antibiotic (Ab) and antiviral (Av) 
pharmacotherapy(n = 14). Hydroxychloroquine and 
Remdesivir, a broad-spectrum antiviral drug, were used 
for treating the patients. Among the other antimicrobial 
drugs, different antibiotics (Ab) were also variably used, 
viz. Doxycycline (broad spectrum tetracycline class), 
Clarithromycin, Azithromycin (both belong to Macrolide 
class), Faropenem (Beta-lactam antibiotic), Co-amoxiclav 
(penicillin like Ab), Levofloxacin and Norfloxacin. First, 
we compared the gut microbial enrichment at T1 and T2 
for patients receiving only Ab and Av therapy without 
any CPT (Supplementary Table 15). Interestingly, poten-
tially pathogenic genera like Streptococcus, Alloprevotella 
and Acinetobacter (phylum Proteobacteria), an often-
multidrug resistant pathogen, were enriched after these 
therapiesat T2 timepoint. Nevertheless, a significant 
enrichment of the potentially metabolic health-promot-
ing genus Subdoligranulum was also documented [52] 
(Supplementary Fig. 3B). However, observations between 
the two groups reflect significant mean differential rela-
tive abundance (p-value < 0.05, Mann Whitney U test), 

which was not evident on applying FDR correction due 
to the small sample size (Supplemental Table 15).

As we also had this sub-group ofpatients who also 
received CPT in addition to the Ab and Av therapy (all 
therapy, n = 13), weexplored the differential gut micro-
bial enrichment at T2 between these two groups. As 
mentioned previously the sample size did not favour sig-
nificant differences on FDR correction (Supplementary 
Table  16). However, on analysing the mean differential 
relative abundance between the two groups four gen-
era belonging to the phyla Bacteroidota, Proteobacteria 
and Firmicutes were found to be differentially abundant 
at T2 between the patients receiving only antibiotic/
antiviral therapy and those also receiving CPT in addi-
tion (p- value < 0.05, Mann Whitney U test). The relative 
abundance (%) of the genus Acinetobacter  (phylum Pro-
teobacteria), an often multidrug-resistant pathogen, was 
found to be high at T2 in patients who did not receive 
CPT (p-value < 0.05), whereas the relative abundance (%) 
of the genera   Prevotella   (phylum Bacteroidota), Acid-
aminococcus and Negativicoccus  (both from Phylum 
Firmicutes) wereenrichedat T2 in patients also receiving 
CPT (p-value < 0.05, Mann Whitney U test) (Supplemen-
tary Fig. 3C, supplementary Table 16). Whether CPT had 
any role in the significant decline in the relative abun-
dance (%) of Acinetobacterin the gut warrants further 
studies in larger cohorts of patients.

We next analysed the gut dysbiosis at T2among the 
patients taking single (n = 7), double (n = 10) or mul-
tiple combinations of antibiotics (n = 10). Altogether, we 
found five significantly different genera between these 
three groups. The relative abundance % of the genus 
Holdemanella from the phylum Firmicutes decreased 
as themore antibioticswere combined (p-value < 0.05, 
Kruskal Wallis H test). Holdemanella (formerly Eubac-
teriumbiformis) produces SCFAs and long chain fatty 
acid (LCFA) 3-hydroxyoctadecaenoic, and has been 
earlier reported to induce anti-cancer and anti-inflam-
matory effects [53]. The relative abundance of genus 
Aerococcusand Brevundimonas from the phylum Pro-
teobacteria increased in patients taking more than two 
antibiotics (p-value < 0.05, Kruskal-Wallis H test). Bre-
vundimonaswas previously reported to be either hos-
pital or community-acquired and resistant to all second 
and third generation antibiotics [54]. On the other hand, 
members of Bacteroidetes (genus Parabacteroides) and 
Lachnoclostridium(family Lachnospiriceae) were found 
to be more abundant in patients taking two antibiotics, 
whereas it decreased in the gut on taking more than two 
antibiotics (p-value < 0.05, Kruskal-Wallis H test)(Supple-
mentary Fig.  3D, supplementary Table 17). Due to low 
sample size in each group, the FDR corrected values 
were highly conserved (> 0.05) and hence large cohort 
size is desirable for significant results. Thus, our analyses 
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revealed a significant effect of antibiotic use on the differ-
ential composition of the gut microbial ecology, driving 
over-abundance of drug-resistant and pathogenic bacte-
ria with multiple antibiotic usage.

Predicted metabolic pathway enrichment in response to 
therapy in severe COVID-19
Next, we explored the modulation of the inferred meta-
bolic capacity of the microbiome using microbial diver-
sity obtained from the 16  S rRNA gene amplicon data 
in response to different therapies. First, we performed 
predicted change in thegut microbial functionality pre-
diction in severe COVID-19 patients who received CPT 
(Supplementary Table  18). Our analysis revealed 9 dif-
ferentially abundant pathways in the gut microbiome of 
patients before (pre-CPT, T1) and after (post-CPT, T2) 
convalescent plasma therapy (Fig.  7A, supplementary 
Table  19). The mean relative abundance of amino acid 
degradation pathways involvingL-histidine (mean = 1.82 
pre-CPT at T1, mean = 4.79 post-CPT at T2) and L-valine 
(mean = 0.00 pre-CPT at T1, mean = 6.66 post-CPT at 
T2) were found to be higher in patients afterconvalescent 
plasma therapy (p value < 0.05, Mann Whitney U test). 
Various bacteria degrade proteinogenic amino acid to use 
them as a source of energy and nutrients [55]. Ergothio-
neine biosynthesis I (EGT) metabolic pathway associated 
with the gut microbiota was found be under-represented 
before plasma therapy, whereas it showed a significant 
upregulation on CPT(p value < 0.05, Mann-Whitney U 
test). The function of ergothioneine (EGT) in the micro-
bial cells is not well understood even though it is believed 
that EGT may protect the cells from oxidative stress 
[56]. Methanol oxidation to carbon dioxide, representing 
detoxification, was also found to be abundant after tak-
ing the plasma therapy (p value < 0.05). Then we extended 
these analyses to severe COVID-19 patients who did not 
receive CPT and were treated only with Ab/Av therapy 
(Supplementary Table 20). Our analysis revealed 13 dif-
ferentially abundant pathways in the gut microbiome 
of patients before (T1) and after (T2) 7 days of therapy 
with antibiotics and antivirals (Fig.  7B, supplementary 
Table 21).

We then compared the inferred metabolic pathway 
enrichment among the gut microbes between patients 
receiving only antibiotic and antiviral drugs (non-CPT 
sub-group) and patients receiving CPT in addition to 
along with antibiotics and antivirals (Fig.  7C, supple-
mentary Tables  22 and 23). Carbohydrate and amino 
acid degradation pathways were highly representedin 
the gut microbiota of patients who took only antibiotic 
and antiviral drugs (p value < 0.05, Mann-Whitney U 
test). Besides these, the pathway for NAD biosynthesis 
(Nicotinamide adenine dinucleotide) was also found to 
be enriched in the non-CPT sub-group. This is the most 

important coenzyme in cellular redox reactions and is 
primarily involved in transcriptional regulation system 
[57]. Interestingly, mean relative abundance of the gut 
microbiome associated pathwaysinvolved in carbohy-
drate fermentation to SCFA was also higher in the non-
CPT group compared with patients also receiving CPT (p 
value < 0.05, Maan-Whitney U test). However, on statis-
tical computation none of these pathways had FDR cor-
rected values < 0.05.

Faecal microbial signature linked to disease outcomes in 
severe COVID-19 patients
Finally, to explore if the baseline contexture (on recruit-
ment at T1) in the faecal microbial dysbiosis was linked 
with the eventual clinical outcomesin the severe COVID-
19 patients, we stratified the severe COVID-19 cohort 
based on eventual remission (n = 31) or non-remission 
(death, n = 11)and ran a set of comparative analyses on 
their T1 genus-level gut microbiome data.

We found that the relative abundance of genus 
Hungatella, a memberof the phylum Firmicutes was 
significantly over-represented in patients who eventu-
ally succumbed to their severe COVID-19 disease (p 
value < 0.01, Mann Whitney U test) even though this was 
not evident after FDR correction. (Supplementary Fig. 3E 
, supplementary Table  24). Hungatella hathewayi, from 
the Lachnospiraceae family, is also known as Clostridium 
hathewayi. Though it is a part of the normal gut flora, it 
has the potential for causing bacteraemia and sepsis [58].

We computed the alpha diversity indices at the OTU 
level, but none of the indices showed a significant dif-
ference (Shannon, Chao1 and Simpson, p = value > 0.05) 
between the two groups (Supplementary Fig. 4A, supple-
mentary Table 25). When we compared the alpha diver-
sity indices within the Lachnospiraceae family, within the 
severe COVID-19 patients eventually achieving remis-
sion versus non-remission, no significant difference in 
Shannon, chao1 and Simpson indices (p-value > 0.05)
between the two groups were observed (p-value > 0.05, 
Mann Whitney, U test)(supplementary Fig. 4B, supple-
mentary Table 25). Comparative analyses of the inferred 
functional profiling of the gut microbial ecology between 
these two patient sub-groups also failed to discern a sig-
nificant difference in enrichment of any metabolic path-
way (p value > 0.05, Mann Whitney U test).

Discussion
The COVID-19 epidemic has raised awareness of the 
importance of life and public health worldwide.This is 
the first study thatshows the composition of gut micro-
biota in an Indian cohort of COVID-19 patients and its 
association with disease severity and therapy outcomes.
The gut dysbiosis in patients with acute respiratory dis-
tress syndrome (ARDS) is characterised by opportunistic 



Page 11 of 17Talukdar et al. Gut Pathogens           (2023) 15:22 

Fig. 7 Relative abundance of metabolic pathways in response to different treatment regimes used for the treatment of COVID-19 in a cohort of Indian 
patients
(A-C) Pheatmap of bacterial gene functional prediction using the latest PICRUSt2 algorithm from the faecal samples of patients at (A) T1(Before CPT) 
and T2 (After CPT) time point respectively. 9 metabolic pathways were differentially abundant between the two groups. (p-value < 0.05, Mann Whitney 
U test). (B) 13 metabolic pathways were differentially abundant betweensevere COVID-19patients (n = 14) at T1 time point (Before antibiotics &antivirals) 
and T2 time point (After antibiotics & antivirals) therapy. (p-value < 0.05, Mann Whitney U test). (C) 12 metabolic pathways were differentially abundant 
betweenpatients given antibiotic& antiviral therapy (n = 14) and the ones with antibiotic & antiviral and convalescent plasma therapy (n = 13) at T2 time 
point. (p-value < 0.05, Mann Whitney U test)
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pathogen enrichment.Several studies have shown that 
respiratory viral infections are associated with gut dys-
biosis. For example infection by influenza and respiratory 
syncytial viruses has been reported to alter gut microbial 
composition [23]. Staphylococcus which is considered to 
be a major human opportunistic pathogen, is aprevalent 
cause of morbidity and mortality worldwide, known to 
be associated with bacteraemia, indicating susceptibil-
ity for disease severity due to potential secondary infec-
tions [59]. On the other hand, we found an increased 
proportion of potential pathobionts belonging to the 
Enterococaceaefamily(genus Enterococcus) in patients 
with severe COVID-19. The presence of enterococcal 
strains in the gut microbiome of critically ill COVID-19 
patients, may act as a pool of opportunistic and antibi-
otic-resistant pathogens, leading to a pro-inflammatory 
environment in the gut [21].

In addition to this, severe COVID-19 patientsshowed a 
depletion in the relative abundance of several gut com-
mensals from the dominant family of Lachnospiraceae 
along with the genus Bifidobacterium. These are com-
mensal gut bacteria which produce microbial metabolites 
by fermenting carbohydratesand have an important role 
in human metabolic and immunological homeostasis 
[60]. The analysis of bacterial richness and alpha diver-
sity among the groups showed that patients with mild 
COVID-19 disease had highermicrobial diversity than 
patients with ARDS and severe disease. Consistent with 
our results it was previously shown that there was sig-
nificant depletion in the diversity of the gut microbiota 
in several respiratory viral infections [23]. Changes in the 
gut is often of fundamental importancein the pathogen-
esis and progression of diseases such as diabetes, obesity, 
autoimmune diseases and diseases related to ageing [61–
63]. Patients with these diseases are established to consti-
tute a high-risk group for developing severe COVID-19 
and the associated gastrointestinal symptoms in these 
patients maybe indicative of COVID-19 complications 
[7].

Convalescent plasma therapy trials for the treatment of 
hospitalized patients in an attempt to ameliorate disease 
progression have been recognized worldwide [64]. Here 
we had the opportunity of analysing the changes in the 
gut microbiome of patients before and after convales-
cent plasma therapy to understand whether gut microbes 
could be playing any role in the disease outcome.To the 
best of our knowledge, these data are the first of their 
kind in this domain. Genus Lachnoclostridium was found 
to be depleted in the gut after convalescent plasma ther-
apy, whereas genus Kocuria from Mirococacceae family, 
which is now considered to be a human pathogen, was 
found to be elevated after plasma therapy. A high abun-
dance of the genus Prevotella was found in patients given 
all therapy. Classically, Prevotella strains are considered 

to be commensal bacterium since it is extensively pres-
ent in the healthy human body, but afew strains have now 
been reported to give rise to opportunistic infections 
including pneumonia [65]. On the contrary, multidrug-
resistant Acinetobacter, an opportunistic pathogen was 
relatively high in patients without convalescent plasma 
therapy. Furthermore, the gastrointestinal (GI) tract col-
onization has been linked to the development of antibi-
otic resistance ofA. baumannii, presumably due to the 
close proximity of the organism to the enormous num-
bers and varieties of bacteria present [66]. The increase 
or decrease in the abundance of certain taxa may not be 
due to treatment regime alone, it might be outcome of 
natural course of the disease and other factors like use of 
dietary changes, stress, environmental expoures, etc.

The predicted metagenome analysis using PICRUSt 
2 depictedmetabolic pathways that werepresent in the 
metagenomes of mild and severe COVID-19 patients. 
Gut microbiota and its metabolites have an important 
role in host physiology and maintenanceof immune 
homeostasis. Thus, from our findings, we decoded sev-
eral pathways related to vitamin B12 biosynthesis, amino 
acid biosynthesis, amino acid degradation, and carbohy-
drate degradation were enriched more in mild COVID-
19 patients, compared to patients with severe disease. 
Previous reports suggested that the functional output 
of the gut microbiome, mainly SCFAs and amino acids, 
which are considered to be important bacterial metabo-
lites, plays a vital role in host physiology [67]. Cobalamin 
(Vitamin B12) has several functions including nucleotide 
synthesis, metabolism of long chain fatty acids and also 
cell metabolism, thus making it a vital factor in promot-
ing resilience to stroke severity [41]. Decarboxylation of 
histidine to histamine by gut microbes hasalready been 
reported. This amino acid has potent immunomodula-
tory effects through activation of histamine receptors and 
the authors have stated that L.rhamnosus exerted anti-
inflammatory effects on histamine signalling pathway 
activation [68].

Progression of SARS-CoV-2 infection to advanced 
stages is usuallyaccompanied by a vicious inflammatory 
response that in the future often leads to multiorgan fail-
ure. Here we have shown that the relative abundance of 
gut microbiota in COVID-19 patients is associated with 
the concentration of several blood plasma cytokines, 
chemokines, and inflammatory markers which thereby 
affect disease severity and outcomes. In a recent study, 
it has been reported that depletion of gut microbiota in 
COVID-19 cohort was linked with increasing concentra-
tions of TNF-α, CXCL10, CCL2 and IL-10 indicating that 
these taxa might have a role in reducing the ARDS asso-
ciated cytokine storm [69].

This study presents the first data on an Indian cohort 
of COVID-19 patients to examine the association of gut 
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microbes with COVID-19 severity. One approach that 
can promote a healthy microbiome includes measures to 
increase the production of butyrate through the micro-
bial fermentation of dietary fibres, which can mitigate 
the inflammatory milieu in the gut as well as systemically. 
Our findings highlight the fact that, along with standard 
therapy, modulation of the gut microbiome composi-
tion and functions with diets or other interventions may 
reduce the disease severity and could be a potential ther-
apeutic opportunity for treating COVID-19 disease and 
its related symptoms.

Our study has a few limitations, including a relatively 
small sample size with mild disease, a lack of asymptom-
atic patients, and a non-COVID control group from the 
same hospital at the same time, which may have over-
looked potential confounding factors. Although a large 
cohort size would have been desirable to firmly establish 
a relationship between COVID-19 severity and gut dys-
biosis, the taxonomic dysbiosis identified in the present 
study is significant. The microbial richness and abun-
dance differences between different taxa in the gastro-
intestinal tract are fairly high, so implementing the false 
discovery rate (FDR) for a limited sample size (< 10) with 
such complexity is not recommendable. In addition, the 
functional potency of the targeted metagenomes was 
predicted based on the distribution of metabolic path-
ways in the core genome of similar OTUs reported else-
where but not on the basis of study samples.

Methods
Subject recruitment and sample collection
The patient cohort with severe COVID-19 disease (diag-
nosed with ARDS) was originally recruited (May, 2020 to 
October 2020) in a randomized control trial (RCT) for 
convalescent plasma therapy (CPT) in severe COVID-19 
disease (CTRI/2020/05/025209), completed and reported 
elsewhere [49]. Patients with mild COVID-19 disease 
were also recruited concomitantly at the same hospi-
tal during the same time-period. The studies were done 
with approval of the institutional ethics committees of ID 
& BG Hospital (IDBGH/Ethics/2429) and CSIR-Indian 
Institute of Chemical Biology, Kolkata, India, in accor-
dance with the Helsinki Declaration. Written informed 
consents were taken from all subjects.

Collection of faecal samples and DNA isolation
Faecal samples were collected from 7 mild patients and 
45 severe patients (Details in supplementary Table  1) 
immediately after enrolment (designated time-point 1 
or T1) and from 32 of these severe patients (SOC n = 16, 
CPT n = 16), follow up faecal samples were collected 7 
days post enrolment (designated time-point 2 or T2) to 
understand changes in the gut microbial composition 
between different diseased states and in response to CPT. 

The faecal samples were collected in 5ml 95% ethanol in 
PBS and stored at -20℃ until DNA isolation. For faecal 
DNA isolation, first the sample vials were centrifuged at 
10, 000 g for 30 min and then the supernatant was dis-
carded. The pellet was then hydrated with C1 solution 
of the Qiagen DNeasyPowerSoil Kit (Hilden, Germany) 
and the solution was then transferred to the PowerBead 
Tubes and the standard protocol of the kit was followed 
accordingly. The extracted DNA samples were stored at 
-20℃ until being sent for sequencing.

Faecal DNA amplicon sequencing
Amplicon-based sequencing of the V3-V4 hyper- variable 
region of 16S rRNA gene with the faecal DNA samples 
was done by MedGenome Labs Ltd, Bangalore, India. In 
brief, the V3-V4 hyper-variable region of 16S rRNA gene 
from the isolated DNA, was amplified using universal 
barcoded primer pairs: V3V4F (5’CCTACGGGNGGC-
WGCAG’3) and V3V4R (5’GACTACHVGGGTATCTA-
ATCC’3) [70]. Quantification of the DNA samples was 
done using Qubit DNA HS Assay. The DNA samples 
were diluted to 5ng and were amplified for 16S rRNA 
gene (~ 1.5 KB) using the universal 16S forward and 
reverse primers with a positive control and no template 
control in a step-up strategy by giving 35 PCR cycles. All 
16S PCR products were further used to amplify V3-V4 
region (~ 465  bp) using specific primers. The amplified 
V3-V4 PCR products were then cleaned up (1X) using 
AgencourtAM Pure XP beads (Beckman Coulter) so that 
the non-specific fragments get removed before proceed-
ing with library preparations. The cleaned V3-V4 prod-
uct was taken for library preparation using NEBNext 
Ultra DNA Library Prep Kit for Illumina (NEB). All the 
prepared libraries were checked for fragment distribu-
tion on Fragment Analyzer using HSNGS Fragment Kit 
(1-6000 bp). For this, the amplicon was end repaired and 
in a single enzymatic reaction it was mono-adenylated at 
3’. The next step was ligation of the DNA fragments with 
NEB hairpin-loop adapters in a T4-DNA ligase-based 
reaction. Following ligation, USER enzyme (a combina-
tion of UDG and Endo VIII) was used for linearizing the 
loop containing Uracil, to make it available as a substrate 
for PCR based indexing in the next step. During PCR, 
barcodes were incorporated using unique primers for 
each of the samples thereby enabling multiplexing. Quan-
tification of the prepared libraries were done using Qubit 
HS Assay. The qualified libraries were then sequenced 
on Illumina Miseq instrument to generate 0.5 M, 250BP 
paired end reads. All the raw sequences generated were 
further analyzed for taxonomic classification.

Analyses of faecal microbiome data
The raw reads were quality controlled with Trimmomatic 
version 0.39 [71]. It removes adaptors and trims low 
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quality bases from the 3’ and 5’ end of reads to generate 
decontaminant raw reads. It also discards trimmed reads 
if their length is less than 60nt. Quantitative Insights into 
Microbial Ecology (QIIME2, version 2018.11), a custom 
pipeline was used to process and analyse decontami-
nant raw reads [72]. Next, DADA2 package was used to 
demultiplex and join the paired end reads to generate 
long sequence [73]. This package infers exact amplicon 
sequence variants(ASVs) from high throughput ampli-
con sequencing data. Then, each sequence was assigned 
its taxonomy by using a pre-trained Naive Bayes classifier 
[74] by searching in Silva ribosomal RNA (rRNA) data-
base release-138 [75] at 97% sequence similarity. Based 
on the sequence data, the taxonomy can be defined at 
different levels of resolution (phylum, class, order, fam-
ily, genus, and species).The primary microbiome analysis 
was done in Marker Data Profiling (MDP) in Microbiome 
analyst [76, 77]. The relative abundance (%) was com-
puted for each taxonomical hierarchy in the R version 
4.1.3. The alpha diversity indices (Shannon or Shannon-
Weaver, Chao1 and Simpson) were calculated using the 
index function present in ‘vegan’ ecological package inte-
grated in R software [78]. The faith PD was calculated 
using QIIME 2 [72]. There is no general agreement as 
to which is the best diversity index for microbial com-
munity diversity, however Shannon and Simpson indices 
have been recommended to actively measure microbial 
diversity [79, 80]. Here in, we describe the estimates of 
species richness and evenness in the study of microbial 
communities.

Co-occurrence network
In order to identify taxonomic groups having positive or 
negative influence on COVID-19 severity, pairwise corre-
lations between the relative abundances of the commen-
sals and pathogenic generawere computed using Pearson 
correlation coefficient (r) in patients with mild and severe 
disease separately. Similarly, co-occurrence between gen-
era abundance and the log fold change of plasma cyto-
kine in patients were calculated using Spearman’s rank 
correlation (rs) The threshold was set to r > 0.7, for the 
different genera in mild (n = 7) and severe disease (n = 44) 
conditions, and to r > 0.5, for the complete set of cyto-
kines and differentially abundant genera in mild and 
severe disease separately. Cytoscape plugin Co Net was 
used for the construction of microbial co-occurrence net-
work (http://apps.cytoscape.org/apps/conet) [81]. It is an 
available network construction method by which micro-
bial co-occurrence are detected by putting together vari-
ous association methodologies simultaneously and finally 
resulting in a consensus network. Wherein, the nodes 
represent genera and cytokines and the edges represent 
the, most significant association between the nodes [82].

Predictive functional analysis
Functional predictions of the bacterial communities from 
the gut metagenome were computed through the Phylo-
genetic Investigation of Communities by Reconstruction 
of Unobserved States using the latest PICRUSt 2 v2.4.2 
software, based on the 16  S rRNA marker using the 
(https://github.com/picrust/picrust2/wiki) as described 
by Douglas et al. in 2020 [83]. The input used was based 
on the unique amplicon sequence variants (ASVs) and 
the Biome file generated from the QIIME 2 database. 
Each ASVs were represented with a unique feature ID 
in the input files. In the first step HMMER (http://www.
hmmer.org/) was used for the multiple assignment of the 
exact sequence variants (ESVs). The ESVs were placed in 
the reference tree with evolutionary placement-ng (EPA-
ng) [84] and Genesis Applications for Phylogenetic Place-
ment Analysis (gappa) omics [85] were used. A default 
castor R package was used for the prediction of gene 
families [86]. Metagenome_pipeline.py [87] was used for 
metagenome prediction and KEGG (Kyoto Encyclopae-
dia of Genes and Genomes) database was used for com-
parison of the output features [88]. Finally, pathway level 
abundances were predicted with pathway_pipeline.py 
function assigning EC numbers to MetaCycreactions and 
KO abundances in KEGG pathways [87].

Plasma cytokine analysis
The plasma cytokine panel data, used in integrated analy-
sis with faecal microbiome data, were generated from 
cryostored plasma samples, collected at recruitment, 
from the cohort of mild (n = 7) severe COVID-19 patients 
(n = 44), as previously published [49]. Multiplex cytokine 
analyses were done on Bioplex 200 (Biorad, Hercules, 
California). Out of total 48 cytokines assayed, 36 ana-
lytes, detectable in at least 70% of patients in the cohort, 
were finally analysed.

Statistical analyses
The 16SrRNA gene sequences were used to character-
ise bacterial community composition of each sample at 
the genus level. The heatmap was created using Pheat-
map package in R. Differences in Shannon, Chao1 
index between the 2 groups were analysed by t-test (as 
per Shapiro-Wilk test). Whereas Simpson and FaithPD 
index between two groups was computed using non-
parametric Wilcox test (as per Shapiro-Wilk test).For 
pairwise comparison between the groups Wilcox tes-
tand for more than two groups Kruskal-Wallis H test in R 
were used respectively.The p-values were corrected using 
Benjamini Hochberg method (FDR) in R environment.
Intergroup differences at the genus level were analysed 
by linear discriminate analysis(LDA) effect size method 
(LEfSe) method [89].LEfSe uses the two-tailed nonpara-
metric Kruskal-Wallis test to evaluate the significance of 
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differences in OTUs in 2 groups.Box plots were gener-
ated in R (v4.1.3) and GraphpadPrism5. Pearsons (r) and 
Spearman’s rank correlation (rs) coefficient were calcu-
lated using the functions cor() or cor.test() in the R 4.1.3 
environment. The statistical significance was defined as a 
p value < 0.05.
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