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Abstract
Background Women suffer from various distress and disturbances after menopause, including osteoporosis, a risk 
factor associated with multiple diseases. Altered gut microbiota has been implicated in postmenopausal osteoporosis. 
In this study, to understand gut microbiota signatures and fecal metabolite changes in postmenopausal women 
with osteoporosis, 108 postmenopausal women were recruited for intestinal microbiota and fecal metabolite 
detection. Among these participants, 98 patients, who met the inclusion criteria, were divided into postmenopausal 
osteoporosis (PMO) and non-postmenopausal osteoporosis (non-PMO) groups based on bone mineral density (BMD). 
The compositions of gut bacteria and fungi were examined by 16 S rRNA gene sequencing and ITS sequencing, 
respectively. Meanwhile, fecal metabolites were analyzed using liquid chromatography coupled with mass 
spectrometry (LC-MS).

Results We found that bacterial α-diversity and β-diversity were significantly altered in PMO compared to non-
PMO patients. Interestingly, fungi composition showed larger changes, and the differences in β-diversity were more 
significant between PMO and non-PMO patients. Metabolomics analysis revealed that fecal metabolites, such as 
levulinic acid, N-Acetylneuraminic acid, and the corresponding signaling pathways were also changed significantly, 
especially in the alpha-Linolenic acid metabolism and selenocompound metabolism. The screened differential 
bacteria, fungi, and metabolites closely correlated with clinical findings between these two groups, for example, the 
bacterial genus, Fusobacterium, the fungal genus, Devriesia, and the metabolite, L-pipecolic acid, were significantly 
associated with BMD.

Conclusions Our findings indicated that there were remarkable changes in gut bacteria, fungi, and fecal metabolites 
in postmenopausal women, and such changes were notably correlated with patients’ BMD   and clinical findings. These 
correlations provide novel insights into the mechanism of PMO development, potential early diagnostic indicators, 
and new therapeutic approaches to improve bone health in postmenopausal women.

Gut microbiota signatures and fecal 
metabolites in postmenopausal women 
with osteoporosis
Han Wang1,2†, Jing Liu3†, Zuoxing Wu1,2, Yangyang Zhao3, Man Cao4, Baohong Shi1,2, Baolong Chen4, Ning Chen5, 
Hao Guo6, Na Li1,2, Jian Chen3* and Ren Xu1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13099-023-00553-0&domain=pdf&date_stamp=2023-7-3


Page 2 of 13Wang et al. Gut Pathogens           (2023) 15:33 

Introduction
Osteoporosis is a metabolic bone disease that is char-
acterized by the decreased bone mass per volume-unit. 
The low bone mass results in increased bone fragility and 
destroys microstructure, thereby reducing bone strength 
and increasing the risk of fractures at different sites [1, 
2]. Osteoporotic fractures which are most common in 
elderly women (> 55 years old) and men (> 65 years old) 
can significantly increase bone disease-related morbid-
ity and mortality [3]. The increased risk of osteoporosis 
and the following fragility fractures are the serious con-
sequences as women grew older. About 10% of the global 
population suffer from osteoporosis, among which post-
menopausal women over 50 years old account for 30% 
[4, 5]. At present, the commonly used anti-osteoporosis 
drugs in clinical practice have been limited by a number 
of factors including unobvious efficacy, long-term medi-
cation, allergic reaction, and mandibular osteonecrosis 
[4]. Therefore, early identification of postmenopausal 
women at risk for fracture and searching for safe and 
effective preventive intervention strategies to reduce the 
risk of fracture have important clinical significance.

The gut microbiome is primarily responsible for the 
balance and maintenance of the interaction between host 
and microorganisms, mainly including bacteria, fungi 
and viruses [6, 7]. In healthy individuals, the mutual 
regulation between intestinal flora and the host helps to 
maintain normal gastrointestinal function [7, 8]. Apart 
from preventing toxins from entering the peripheral 
circulation, a healthy gastrointestinal tract contributes 
to regulating the absorption of nutrients and water, and 
forming an intestinal barrier [9, 10]. Due to the exis-
tence of intestinal barrier, intestinal microorganisms can 
safely reside in the intestine. However, disruption of the 
intestinal ecosystem results in various digestive ailments 
such as ulcerative colitis and Crohn’s disease, as well as 
obesity, diabetes, immune system dysregulation, and 
osteoporosis-related metabolic diseases [9, 11]. Among 
gut microbiota, the proportionately low content of fungi 
accounts for 0.1% of total intestinal microbes. Although 
fungi comprise such a small percentage of intestinal flora, 
these microorganisms indeed affect the occurrence and 
development of multi-system diseases [12, 13]. How-
ever, until now no evidence had implicated a relationship 
between fungi and osteoporosis.

Accumulating evidence indicate[s] that the pathologi-
cal process of osteoporosis is regulated by gut microbes 
[14]. Clinical studies have reported that the overprolif-
eration of intestinal flora is associated with the decreased 
bone mineral density (BMD). Patients with enteric 
bacterial over-growth syndrome generally appear low 

bone mineral density and osteomalacia, high levels of 
pro-inflammatory factors such as TNF-α and IL-1, and 
increased activated osteoclasts [15]. Due to the impor-
tant regulatory role of intestinal flora on metabolism, 
lack of intestinal flora at birth leads to many physiological 
and metabolic changes in the body, including the reduced 
absorption of calories, vitamins, and nutrients, and the 
delayed height, weight, and organ development [16]. Gut 
microbiota dysbiosis causes immaturity of immune, vas-
cular, endocrine, intestinal, and nervous systems, all of 
which are involved in the regulation of bone mass [17, 
18]. Low-dose penicillin induces a decrease in intestinal 
microbiota in prepubertal mice (21 days old), resulting 
in changes in intestinal microbiota metabolites and the 
abnormalities of intestinal immune [19], while antibiotic 
therapy-mediated intestinal microbiota depletion accel-
erates weight and bone growth [20]. Therefore, it follows 
that there is a close link between gut flora and bone loss. 
Importantly, there are great differences in the intestinal 
flora colonized in different regions and populations. The 
gut microbiome of postmenopausal women reveals an 
altered community dynamic, with co-presentations of 
osteoporosis and/or osteopenia diagnoses [21]. Evidence 
gathered on the gut microbiota-bone axis suggests Pre-
votella histicola was specifically able to prevent estrogen 
deficiency-induced bone loss [22]. A randomized con-
trolled trial revealed that a bioavailable isoflavone and 
probiotic treatment can improve bone status and estro-
gen metabolism in postmenopausal osteopenic women 
[23]. Therefore, gut microbes are directly involved in the 
regulation of bone metabolism in postmenopausal osteo-
porosis. However, the specific mechanisms between gut 
microbiota, their fecal metabolites, and bone metabolism 
remains unclear.

In this study, the differential gut bacteria and fungi of 
intestinal microbiota and fecal metabolites were analyzed 
between postmenopausal osteoporosis (PMO) and non-
postmenopausal osteoporosis (non-PMO) women using 
16  S rRNA gene sequencing and ITS sequencing. The 
present study provides potential early diagnostic indica-
tors to discriminate PMO and offers new strategies for 
treating osteoporosis.

Results
The difference of intestinal microorganisms between PMO 
and non-PMO patients
To uncover the difference of intestinal microorganisms 
between PMO and non-PMO patients, we examined 
the abundance of gut bacteria and fungi in these two 
groups. Using 16 S rRNA sequencing, 82 exclusive bac-
teria genera were observed in non-PMO population, 
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while 48 bacteria genera were screened in PMO cohort. 
Additionally, both groups shared 1,952 genera of bacte-
ria (Fig. 1A). In terms of fungi, 84 fungi were unique to 
the non-PMO population, while 90 fungi were unique to 
the PMO population, and 221 fungi were shared between 
these two groups (Fig. 1B).

Based on the in-depth analysis of gut bacteria, 
α-diversity index, Chao1 index, Abundance-based Cov-
erage Estimator (ACE) and Shannon index were signifi-
cantly decreased in PMO population compared to that 
in non-PMO patients (Fig.  2A). In comparison to non-
PMO, although Simpson index and J index showed a 
decreasing trend in PMO population, there was no sig-
nificant difference between them. However, there was no 
significant difference in α-diversity index, Shannon index, 
and Simpson index of fungi between non-PMO popula-
tion and PMO population (Fig. 2B). β-diversity, which is 
an important index to evaluate the distribution of bacte-
rial and fungal genera, showed a significant decrease in 
gut bacteria of PMO patients and a significant increase 
in gut fungi of PMO patients by contrast to non-PMO 
patients (Fig.  2C and D). Therefore, intestinal microor-
ganisms changed greatly in PMO patients.

Bacterial genus with differential abundance between PMO 
and non-PMO patients
The search for signature species between different pop-
ulations contributes to exploring the distinct diagnostic 
factors and providing potential candidate targets for sub-
sequent mechanism studies. The LDA Effect Size index 
was set as 2 between these two groups. Data indicated 
that Veillonella, Parabacteroides, and Harryflintia were 
mainly enriched in PMO population, while Veillonella, 
Prevotella, and Enterobacterium mainly appeared in 
non-PMO patients. Importantly, the abundance of these 

enriched bacteria differed significantly between the two 
groups (Fig. 3A and B). In terms of fungi, Pichia, Auric-
ularia, and Myrothecium were observed in non-PMO 
patients, while Eurotium, Penicillium, and Chlorophyllum 
were mainly concentrated in PMO population (Fig.  3C 
and D). Thus, there were significant differences in genus 
levels between PMO and non-PMO patients.

Analysis of intestinal microbial metabolic pathways in PMO 
and non-PMO patients
Metabolic pathway analysis was performed using the 
KEGG database. Based on KEGG database, PICRUSt 
analysis was applied to predict the functional profiling 
of microbial communities according to 16 S sequencing 
data. We confirmed that the enrichment of flora-related 
Adipocytokine signaling pathway, Amoebiasis pathway, 
and Ethylbenzene degradation pathway was significantly 
increased in PMO population compared with non-PMO 
population. However, the enrichment of pathways in 
bladder cancer, prion diseases, and bacterial invasion of 
epithelial cells were significantly decreased in PMO com-
pared to non-PMO patients (Fig. 4A). COG database was 
further used to analyze the top 20 potential metabolic 
pathways. The results indicated that the pathway related 
to transposase and inactivated derivatives was enriched 
in non-PMO population, and the pathway associated 
with Holliday junction resolvasome and endonuclease 
subunit were enriched in PMO patients (Fig. 4B). There-
fore, metabolic pathways were also changed significantly 
in PMO patients.

Metabolomics analysis of fecal metabolites between PMO 
and non-PMO patients
To further evaluate the association between metabolites 
and bone mineral density, we employed metabolomics 

Fig. 1 Venn diagram of gut microbiota composition in PMO and non-PMO patients. (A) Venn diagram demonstrating the differences in the distribution 
of gut bacteria between PMO and non-PMO populations. (B) Venn diagram demonstrating the differences in the distribution of gut fungi between PMO 
and non-PMO populations. PMO, postmenopausal osteoporosis; non-PMO, non-postmenopausal osteoporosis. Brown: the number of differential bacte-
ria (n = 2000) or fungi (n = 2034) in PMO patients. Blue: the number of differential bacteria (n = 311) or fungi (n = 305) in non-PMO patients
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to detect the distribution of metabolites in these two 
groups. As shown in Fig.  5A, the principal component 
analysis (PCA) showed a significant difference in fecal 
metabolite compositions between non-PMO and PMO 
patients (Fig.  5A). In brief, the abundances of Levulinic 
acid, N-Acetylneuraminic acid, Pimelic acid, Adenine, 

L-Lysine, Hydroxyisocaproic acid, and Azelaic acid nota-
bly raised in PMO population, while the abundance of 
Quinate, Kynurenic acid, Phit-val, Glycochenodeoxy-
cholate, 1-Palmitoyl-sn-glycero-3-phosphocholine, and 
1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocho declined 
significantly in PMO patients, by contrast to that in 

Fig. 2 Analysis of intestinal microbial diversity in PMO and non-PMO patients. Box plot demonstrating α-diversity index, including Chao1 index, 
Abundance-based Coverage Estimator and Shannon index, Simpson index and J index in intestinal bacteria (A) and intestinal fungi (B) of PMO and non-
PMO patients, repectively. Brown: PMO; Blue: non-PMO. PCoA plot was used to analyze the differential beta-diversity index in intestinal bacteria (C) and 
intestinal fungi (D) of PMO and non-PMO patients, repectively. *P < 0.05, **P < 0.01
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non-PMO population (Fig.  5B). Subsequently, cluster 
analysis revealed that the main enrichment pathways in 
PMO cohort included alpha-Linolenic acid metabolism, 
Selenocompound metabolism, beta-Alanine metabolism 
and Lysine degradation, Arginine and proline metabo-
lism, D-Glutamine and D-glutamate metabolism and 
Nitrogen metabolism (Fig. 5C). Possibly, the 16 S rRNA 

gene sequencing results showed that some components 
of the fecal microbiota significantly differed between the 
PMO and non-PMO groups; thus, we inferred that alter-
ations in the fecal microbiota may lead to alterations in 
fecal metabolites.

Fig. 3 The differential bacterial community analysis between PMO and non-PMO patients. (A and C) Significantly enriched bacterial taxa (A) and fungi 
(C) in the different groups as determined by LEfSe analysis (LDA sore > 2). (B and D) Boxplot of the top 10 genera that showed the difference of the micro-
biota composition in bacteria (B) and fungi (D) level between PMO and Non-PMO groups. Brown: PMO; Blue: non-PMO. *P < 0.05, **P < 0.01, ***P < 0.001
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Association analysis of bacteria, fungi, and metabolites 
with clinical indicators in PMO and non-PMO patients
Next, we analyzed the correlation between intestinal 
bacteria/fungi/metabolites and clinical indications using 
Pearson correlation analysis in PMO and non-PMO 
patients. Data revealed that gut bacterial Fusobacte-
rium, Parabacteroides, Anaerotruncus, Defluviitaleaceae, 
Acetanaerobacterium, and Leptotrichia were closely 
related to BMD (Fig.  6A). Gut fungal Devriesia, Mon-
tagnulaceae, and Nectriaceae were significantly corre-
lated with BMD (Fig.  6B). Metabolites related to BMD 
included L-Pipecolic acid, alpha-Linolenoyl ethanol-
amide, D-Alanyl-D-alanine(D-Ala-D-Ala), N-Acetylman-
nosamine, and Serine-Valine (Fig.  6C and D). Thus, the 
altered intestinal bacteria/fungi/metabolites in PMO and 
non-PMO patients were related to BMD.

Modeling analysis of PMO based on gut bacteria and fungi
Subsequently, we established an identifying model for 
distinguishing non-PMO and PMO patients according 
to the differential bacterial and fungi communities. As 
shown in Fig. 7A, we developed a model using character-
istic bacterial Prevotella as a classification factor accord-
ing to the random forest model (Fig.  7A). The results 
showed that the identification efficiency between PMO 
and non-PMO population was as high as 0.9008 (Fig. 7B). 

Consistently, the discriminant efficiency reached 0.8151 
when fungi were used as the classification factor in the 
model. To verify the true validity of our model, we fur-
ther collected fecal samples from a prospective cohort of 
patients and performed fecal flora analysis. The discrimi-
nant efficiency of the bacteria-based classification model 
in this cohort was 0.8962, while the discriminant effi-
ciency of the fungi-based classification model was 0.7923 
(Fig. 7C and D).

Discussion
The intestinal tract is known as the second brain of 
human body, in which intestinal flora is a functional neu-
ron that coordinates the operation of the whole-body 
system. Particularly, intestinal flora can participate in 
the regulation of postmenopausal osteoporosis [24, 25]. 
There is a close relationship between gut microbiome 
and bone turnover markers in postmenopausal women 
[26]. Numerous studies have explored the association 
between bone and intestinal flora in germ-free mice lack-
ing intestinal flora, animal models treated with antibiot-
ics or probiotics, and humans [27]. Although there are 
somewhat contradictions, the current consensus is that 
gut flora acts as a major regulator of BMD by influenc-
ing the immune system [28]. Supplementation with pro-
biotics or a dietary fiber diet can regulate the distribution 

Fig. 4 Metabolic pathways analysis between PMO and non-PMO patients. (A) KEGG was used to analyze the different metabolic pathways in intestinal 
bacteria. PICRUSt was used to calculate microbial abundance. Box plot demonstrating differential metabolomic pathways in intestinal bacteria of PMO 
and non-PMO women. (B) PICRUSt was used to calculate microbial abundance. COG was employed to analyze intestinal bacterial differential metabolic 
pathways. Box plot demonstrating differential metabolomic pathways (ID) of PMO and non-PMO women. Brown: PMO; Blue: non-PMO.
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of intestinal flora, thereby reducing bone loss caused by 
estrogen loss [29, 30].

Gut microbiota changes have a significant impact 
on bone loss. There is growing evidence that connect-
ing microbiome and menopause holds promise for new 
interventions to alleviate menopausal symptoms and for 
healthy ageing [31]. Lower gut microbiome diversity and 
a shift toward greater similarity to the male gut micro-
biome were confirmed in PMO patients [32]. Using 16 S 
rRNA gene sequencing, researchers have identified a 
close relationship between gut microbiota composition 
and osteoporosis/fracture risk in Japanese postmeno-
pausal women [33]. However, there was no significant dif-
ference in bacterial α-diversity between the two groups. 
For example, there was no significant difference in bacte-
rial α-diversity between the two groups. This is similar to 
an emerging report that confirmed the enrichment Lac-
tobacillus sp. in non-PMO and the increased abundances 

of Peptoniphilus sp., propionic acid bacteria, and mem-
bers of the Galicola genus in PMO [34]. Gut fungi 
accounts for a small proportion of intestinal microbes. 
However, it participates in the occurrence and develop-
ment of multiple diseases [12, 13]. For instance, it has 
demonstrated that antifungals treatment can reduce liver 
damage in a fecal microbiome-humanized mouse model 
of Western diet-induced steatohepatitis [35]. Thus, fungi 
may play the important role in a variety of pathological 
processes. Our data were consistent with these findings. 
In the present study, species richness, diversity, and char-
acteristic fungi appeared significantly different in PMO 
compared to that in non-PMO patients, indicating that 
there was a close correlation between fungi and osteo-
porosis. This finding further confirmed that fungi was an 
important regulatory factor among the overall biological 
flora in PMO patients. However, the detailed interac-
tion between them is worth further study. In addition to 

Fig. 5 Metabolomics analysis of fecal metabolites between PMO and non-PMO patients. (A) Unsupervised principal component analysis (PCA) score plot 
demonstrating clear separation between fecal metabolomic profiles of PMO and non-PMO women based on all shared metabolites. PCA was calculated 
using MetaboAnalyst metabolomics analysis suite and ANOVA followed by Tukey’s multiple comparisons test using PRISM. (B) Scatter diagram demon-
strating differential abundance of negative ion patterns (left) and positive ion patterns (right) of metabolomics between PMO and non-PMO patients. 
(C) Box plot demonstrating differential metabolite-related signaling pathways (top25) between PMO and non-PMO patients. PMO, postmenopausal 
osteoporosis; non-PMO, non-postmenopausal osteoporosis
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that, our data proved a significant association between 
Fusobacterium/Parabacteroides with BMD of PMO 
patients. Consistently, previous studies have confirmed 
that the abundance of these bacteria was also altered in 
osteoporosis patients [36, 37]. In term of fungi, Devrie-
sia, Montagnulaceae and Nectriaceae were associated 
with BMD indexes in this study. However, there is no 
evidence to confirm the association between these fungi 
species and osteoporosis. Thus, our data might provide a 
new target for exploring the mechanism underlying the 
process of PMO. Considering the positive association 
between Devriesia and BMD, and the negative associa-
tion between Montagnulaceae and BMD, the two fungi 
species may play the beneficial and harmful roles during 
osteoporosis, respectively.

Several mechanisms underlie abnormal gut flora-medi-
ated bone loss. Clinically, it has been found that the dam-
aged strength in women’s spinal curvature strength is 
associated with a significant reduction in the gut micro-
biome, B cells, and T cells, which indicates a correlation 

between immune cell number and bone tissue character-
istics [38]. Additionally, depletion of intestinal flora can 
lead to hyperimmune states [39]. Gut flora exerts last-
ing effects on the immune system either through direct 
contact or its metabolites. The increased bacterial abun-
dance in the gut can raise the antigen load, leading to 
increased inflammatory cytokines, impaired osteoblast 
function, and bone loss in sickle cell disease (SCD) mice 
by compromising intestinal barrier of the immune sys-
tem [40]. Previous study has indicated that menopause 
leads to increased gut permeability and inflammation, 
and greater gut permeability is related with more inflam-
mation and lower bone mineral density across the meno-
pause transition [41]. Thus, the association between gut 
flora and bone loss in PMO patients has the involvement 
of inflammation and immune regulation. In our study, 
significant changes in fecal metabolite abundance were 
observed in non-PMO and PMO populations, which may 
affect various metabolic pathways of the host, including 
alpha-Linolenic acid metabolism, etc. These metabolites 

Fig. 6 Clinical correlation analysis of bacteria, fungi, and metabolite in PMO-and non-PMO patients. (A) Clustering analysis demonstrating the correla-
tion between intestinal bacterial and clinical indicators in PMO and non-PMO patients. (B) Clustering analysis demonstrating the correlation between 
the abundance of intestinal fungi and clinical indicators in PMO and non-PMO patients. (C) Clustering analysis demonstrating the correlation between 
metabolites and clinical indicators by mass spectrometry in the negative ion mode. (D) Clustering analysis demonstrating the correlation between 
metabolites and clinical indicators by mass spectrometry using positive ion-mode detection. PMO, postmenopausal osteoporosis; non-PMO, non-post-
menopausal osteoporosis
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and metabolic pathways have been shown to be closely 
related to bone metabolism and development [42, 43]. 
However, we also found that some novel metabolites, 
such as levulinic acid and pimelic acid, were significantly 
up-regulated in PMO population compared to non-
PMO patients. Although no significant correlation was 
observed between these metabolites and BMD, these 
metabolites may still potentially influence the develop-
ment of postmenopausal osteoporosis in women. Intesti-
nal fungi are capable of developing symbiotic interactions 
with the hosts [12]. In brief, fungal wall components can 

be recognized by receptors of host cells, subsequently 
triggering antifungal signal transduction cascades and 
ultimately regulating innate and adaptive immune 
responses [44, 45]. Considering that intestinal bacteria-
mediated the activation of immune system is closely 
related to the occurrence of osteoporosis, intestinal 
fungi may also regulate bone loss by regulating immune 
system.

The incidence of postmenopausal osteoporosis is about 
57%. It is of great significance to effectively predict the 
occurrence of osteoporosis at the early stage [1, 46]. A 

Fig. 7 Intestinal microbiota-based model for distinguishing non-PMO patients from PMO patients. (A) Bacterial factors for intestinal bacteria-based PMO 
diagnosis model. (B) Line chart demonstrating the discriminant efficacy of the intestinal bacteria-based PMO diagnosis model in the exploration and 
validation cohorts. (C) Bacterial factors for intestinal fungi-based PMO diagnosis model. (D) Line chart demonstrating the differential efficacy of the intes-
tinal fungi-based PMO diagnosis model in the exploration and validation cohorts. PMO, postmenopausal osteoporosis; non-PMO, non-postmenopausal 
osteoporosis
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recent study has reported 20 factors that closely affect 
osteoporosis. After screening with multiple feature selec-
tion methods, the differential efficiency of the random 
forest model is 0.921, which may be used as a practical 
method for the early diagnosis of postmenopausal osteo-
porosis [47]. Other studies have also proposed other 
potential predictors [48, 49]. In this study, we focused 
on the early diagnostic value of intestinal flora in PMO. 
Combined with the stochastic forest model, we con-
firmed that intestinal microecology including bacteria 
and fungi could act as a better identifier for predicting 
PMO. Importantly, although the efficacy of the validation 
cohort was reduced compared to the exploration cohort, 
the AUC was still higher than 0.8 for both bacteria and 
fungi.

Conclusions
Collectively, our results suggested that postmenopausal 
women have significant changes in gut bacteria, fungi, 
and metabolites that are significantly correlated with 
BMD values and clinical features of PMO patients. This 
correlation provides potential directions for explor-
ing the mechanism of PMO development and provides 
potential early diagnostic indicators for PMO. This study 
may provide novel interventions to improve the level of 
bone health in postmenopausal women.

Materials and methods
Study cohort
This study was a designed case-control study. This study 
was approved by the Ethics Committee of Zhongshan 
Hospital of Xiamen University (No. 201,808). Non-PMO 
subjects (n = 58) and newly diagnosed PMO patients 
(n = 40) who were admitted to Zhongshan Hospital Xia-
men University from September 2021 up to now were 
recruited. Clinical information was presented in Table 1. 
For modeling analysis, a prospective cohort of non-PMO 
subjects (n = 10) and PMO patients (n = 13) were col-
lected from Xinyu People’s Hospital (Jiangxi Province, 

CN). The trial number was ChiCTR1900027187. Clini-
cal information of enrolled patients (modeling analy-
sis) was presented in Table 2. Written informed consent 
was obtained from PMO patients and healthy people. 
The inclusion criteria were as follows: postmenopausal 
women were aged 50–70 years and were diagnosed with 
osteoporosis; All cohorts participated voluntarily in the 
study and signed the informed consent. The exclusion 
criteria were as below: people with organ dysfunction, 
neurological diseases (such as Parkinson’s syndrome, 
dementia, stroke, etc.), or rheumatic immune diseases 
were excluded; Patients with gastrointestinal diseases 
such as total parenteral nutrition, inflammatory bowel 
disease, and gastrointestinal surgery were also excluded 
from this study; patients with other serious diseases, such 
as malignant tumors or infectious diseases were not suit-
able for this study; patients who used antibiotics, other 
microecological preparations and gastrointestinal motil-
ity drugs that could affect intestinal flora within 30 days 
prior to enrollment. Patients who were taking or recently 
using Chinese and Western medicines such as calcitonin 
and zoledronic acid that could affect bone metabolism; 
patients with secondary osteoporosis were excluded; per-
sons with mental or legal disabilities, additional patients 
unsuitable for inclusion and patients who are participat-
ing in other clinical trials were not suitable for the pres-
ent research. The control group was postmenopausal 
non-osteoporosis patients (non-PMO). According to 
previous literature, the incidence of osteoporosis in post-
menopausal women is 57%. Based on these, the effect 
size D1, α-value and β-value of difference in microflora 
between PMO and non-PMO populations were set as 
0.57, 0.05, and 0.05, respectively. The expulsion rate was 
set as 5%. The sample size in the two groups was defined 
as 38 according to SPASS 15 software. Due to the 5% 
expulsion rate, 40 patients in each group were enrolled in 
this study.

Clinical data
Basic information such as age, height, and weight of all 
subjects were recorded, and body mass index (BMI) was 

Table 1 The clinicopathological factors of non-PMO (n = 58) 
patients and PMO (n = 40)
Characteristics non-PMO PMO P-value
Age (year) 57.35 ± 3.98 59.69 ± 5.51 NS

BMI (kg/m2) 24.28 ± 2.79 23.8 ± 2.17 NS

LS BMD (g/cm3) 1.19 ± 0.11 0.8 ± 0.07 ***

FN BMD (g/cm3) 0.98 ± 0.08 0.72 ± 0.1 ***

Total hip 1.02 ± 0.09 0.76 ± 0.11 ***

E2 (pmol/L) 45.85 ± 29.35 24.42 ± 7.47 ***

25(OH)VD (ng/mL) 50.86 ± 17.7 56.28 ± 20.46 ***

BGP (ng/mL) 19.96 ± 7.45 24.24 ± 13.25 NS

CTX-1 (ng/mL) 0.38 ± 0.18 0.48 ± 0.33 NS

P1NP (ng/mL) 54.92 ± 21.35 64.91 ± 43.46 NS

PTH (pg/mL) 45.4 ± 21.59 47.65 ± 26.08 NS

Table 2 The clinicopathological factors of non-PMO (n = 10) 
patients and PMO (n = 13)
Characteristics non-PMO PMO P-value
Age (year) 57.5 ± 4.53 57.1 ± 6.01 NS

BMI (kg/m2) 21.79 ± 1.63 21.17 ± 2.06 NS

LS BMD (g/cm3) 0.98 ± 0.09 0.61 ± 0.07 ***

FN BMD (g/cm3) 1.07 ± 0.14 0.78 ± 0.13 ***

E2 (pmol/L) 42.2 ± 16.36 30.54 ± 17.22 NS

25(OH)VD (ng/mL) 45.95 ± 10.05 49.18 ± 10.91 NS

BGP (ng/mL) 15.06 ± 5.81 19.57 ± 15.34 NS

CTX-1 (ng/mL) 0.53 ± 0.21 0.7 ± 0.4 NS

P1NP (ng/mL) 45.67 ± 20.88 64.98 ± 69.18 NS
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calculated. Blood samples were collected for serological 
testing in the morning after more than 6-hour fasting. 
Serum levels of 25 (OH) D, estradiol (E2), osteocalcin 
(OC), C-terminal peptide of type I collagen (CTX-I), 
N-terminal propeptide of type 1 procollagen (P1NP), 
and parathyroid hormone (PTH) were measured using 
the Roche Diagnostics GmbH Electrochemical Lumi-
nescence System (Roche Diagnostics GmbH, Germany). 
Bone mineral density (BMD) in the lumbar spine (LS: 
L1-4) and total hip joint (femoral neck), trochanteric and 
intertrochanteric areas were measured using a diurnal 
calibrated Hologic 4500 dual-energy X-ray absorptiom-
etry scanner (Lunar Expert 1313, Lunar Corp, USA).

Fecal sample collection, DNA extraction, and 16 S rRNA 
gene sequencing
Stool samples from each volunteer were immediately 
stored in a -80 ℃ freezer after collection. After the stool 
samples were thawed and homogenized, total DNA was 
extracted from each sample (0.25  g) using the QIAamp 
Rapid DNA Stool Mini Kit (QIAGEN, Hilden, Germany) 
according to the manufacturer’s instructions. The con-
centration and purity of extracted DNA were measured 
by Multiskan™ GO full-wavelength enzyme marker 
(Thermo Fisher Scientific, US). DNA integrity was tested 
by agarose-gel electrophoresis. Bacterial and fungal com-
munities were amplified by targeting the V4 region of 
16  S rRNA gene and ITS2 fragment, respectively. The 
forward primer sequence of 16  S was 5’-GTGCCAGC-
MGCCGCGGTAA-3’, and the reverse primer sequence 
was 5’-GGACTACNVGGGTWTCTAAT-3’. The for-
ward primer sequence of ITS2 was 5’-GCATCGAT-
GAAGAACGCAGC-3’, and reverse primer sequence 
was 5’-TCCTCCGCTTATTGATATGC-3’. Polymerase 
chain reaction (PCR) products were purified and evalu-
ated using Qubit 3.0 (Thermo Fisher Scientific, US). The 
PCR products were purified with Qiagen Gel Extraction 
Kit(Qiagen, Germany). Sequencing libraries were gener-
ated usingTruSeq® DNA PCR-Free Sample Preparation 
Kit (Illumina, USA) following manufacturer’s recommen-
dations and index codes were added. The library quality 
was assessed on the Qubit@ 3.0 Fluorometer (Thermo 
Fisher Scientific, US) and Agilent Bioanalyzer 2100 sys-
tem. At last, the library was sequenced on an Illumina 
NovaSeq platform and 250  bp paired-end reads were 
generated. Wilcoxon rank-sum test, that was set at a 
Monte-Carlo significance level α = 0.05 to calculate LDA 
scores, was used to detect features with different abun-
dance levels between assigned taxa based on a normal-
ized relative abundance matrix. All tests were performed 
using 999 permutations.

Bioinformatics analysis
Paired-end reads were assembled using flash software. 
The primer sequences and the lower readings were 
removed. Checks for chimeric sequences and OTU clus-
tering are performed using clean reads. All reads were 
demultiplexed into a single file, clustered with 97% simi-
larity, and then the UNITE UCHIME reference data-
set (version 7) was checked for Chimera examination 
using UCHIME in reference mode. The representative 
sequence was generated; the monomers were removed; 
and the final OTU table was created. Representative 
sequences of OTU were compared on the UNITE ITS 
database and classified by RDP classifier.

Metabolomics
Twenty-five milligrams of fecal samples were mixed 
with 500 µL of extraction solution (methanol: acetoni-
trile: water = 2:2:1, internal standard mixture was labeled 
with isotope). Then, the samples were homogenized at 
35 Hz for 4 min, followed by 5 min ultrasound in an ice 
water bath. The homogenization and ultrasound cycle 
were repeated for 3 times. After incubation at -40℃ for 
1  h, the mixture was centrifuged at 4℃ at 12,000  rpm 
for 15 min, and the supernatant was transferred to fresh 
glass vials for subsequent analysis. Fecal metabolomics 
was measured using the Vanquish (Thermo Fisher Scien-
tific) ultra-high performance liquid chromatograph. The 
target compounds were separated by Waters ACQUITY 
UPLC BEH Amide (2.1  mm × 100  mm, 1.7  μm) liquid 
chromatography column. Sample plate temperature 
maintained at 4℃ and sample volume was set as 2 µL. 
Mass spectrometry data was collected by the Orbitrap 
Exploris 120 mass spectrometer. Detailed parameters 
are as follows: sheath gas flow, 50 Arb; auxiliary gas flow, 
15 Arb; capillary temperature, 320℃; full ms resolution, 
60,000; MS/MS resolution,15,000; NCE mode colli-
sion energy, 10/30/60; spray voltage, 3.8 kV (positive) or 
-3.4 kV (negative).

Functional analysis based on bacterial taxonomy
The unobserved State Reconstruction Community Phy-
logenetic Survey (PICRUSt) was used to predict metage-
nomic functional content. The sequencing data of 16  S 
was used to predict the presence of genes. First, the ref-
erence set GreenGenes database was read and a closed 
reference OTU table was constructed using QIIME soft-
ware. The generated OTU table is normalized by copy 
number. Metagenomes were predicted using predict_
metagenomes.py. ANOVA was used for statistical differ-
ence analysis. The results were visualized using a custom 
R script based on ggplot2.
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Machine learning models
Random Forest (R package and caret) models were 
trained on data from multiple omics analyses, including 
16 S and ITS, respectively. The models were used to test 
whether data based on bacteria or fungi could predict 
osteoporosis. Firstly, the importance of common genera 
was ranked according to their average decline in accu-
racy. Next, we performed stepwise feature selection using 
a five-fold cross-validation approach to avoid over-fitting 
and over-optimistic estimates. This method is used to 
select and predict microbial characteristics and eliminate 
non-information characteristics. The area under ROC 
curve (AUC) was calculated to evaluate the differentia-
tion of characteristic OTU.

Statistical analysis and visualization
The estimation of α-diversity was based on a uniform 
and sparse OTU abundance matrix. Significant differ-
ences between α-diversity were examined using the non-
parametric Kruskal-Wallis test and Benjamini Hochbery 
correction. The β-diversity that could estimate differ-
ences in community structure between samples was mea-
sured using the Bray-Curtis distance based on a uniform 
sparse OTU abundance table. Statistical differences in 
β-diversity measure were determined using R-package. 
OTU was calculated and visualized using the VennDia-
gram in R-package. Taxonomic abundance was measured 
and plotted using ggplot2. Different taxa abundance in 
different populations was monitored using LEfSe analy-
sis. A genus-based index analysis was performed using 
R packaging to label species from genus information. 
Finally, a custom R script based on ggplot2 was used to 
visualize the results and the results were analyzed using 
R v3.4.1.
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