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communities in humans can be found in the GI tract. A 
finely regulated relationship exists within the GI tract, 
however, microorganisms essential for host health can 
also contribute to the occurance and development GI 
cancers [3–5]. For example, Helicobacter pylori induces 
gastric cancer by modulating CagA, the oligotoxin VacA 
allele and other cytokines that affect the body’s immune 
system [6, 7]; Haemophilus ducreyi induces cell cycle 
arrest by inducing the tripartite cytolethal distending 
toxin that creates DNA lesions [8]; Enterococcus faecalis 
mediates colorectal cancer (CRC) by producing geno-
toxic peroxides that influence the cell cycle and poly-
ploidy precipitation [9, 10]; Salmonella promotes CRC by 
releasing the multifunctional protein AvrA, which inhib-
its β-catenin degradation, or by altering β-catenin ubiqui-
tination and acetylation levels [11].

The reduction and oxidation (redox) state of the 
GI tract depends on the balance of antioxidants and 
oxidants. Common antioxidants in the GI tract are 

Introduction
According to Global Cancer Statistics 2020, gastrointes-
tinal (GI) cancers, including colorectal cancer and gastric 
cancer, account for approximately one-third of the total 
global cancer incidence and mortality [1]. The GI tract 
is estimated to contain over 70% of all microbes in the 
human body [2]. Arguably, the most important microbial 
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Abstract
Gastrointestinal (GI) cancers are among the most common and lethal cancers worldwide. GI microbes play 
an important role in the occurrence and development of GI cancers. The common mechanisms by which GI 
microbes may lead to the occurrence and development of cancer include the instability of the microbial internal 
environment, secretion of cancer-related metabolites, and destabilization of the GI mucosal barrier. In recent years, 
many studies have found that the relationship between GI microbes and the development of cancer is closely 
associated with the GI redox level. Redox instability associated with GI microbes may induce oxidative stress, DNA 
damage, cumulative gene mutation, protein dysfunction and abnormal lipid metabolism in GI cells. Redox-related 
metabolites of GI microbes, such as short-chain fatty acids, hydrogen sulfide and nitric oxide, which are involved 
in cancer, may also influence GI redox levels. This paper reviews the redox reactions of GI cells regulated by 
microorganisms and their metabolites, as well as redox reactions in the cancer-related GI microbes themselves. This 
study provides a new perspective for the prevention and treatment of GI cancers.
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glutathione and superoxide dismutase (SOD) [12–14]. 
In addition, common oxidants in the GI tract are free 
radicals, including superoxide (O2·−) and hydroxyl (OH·); 
reactive oxygen, including hypochlorous acid (HOCl) 
and hydrogen peroxide (H2O2); nitrogen species, includ-
ing nitric oxide (NO) and nitrogen dioxide (NO2·); and 
sulfur species, including hydrogen sulfide (H2S), persul-
fides and polysulfides [14–22]. When the redox state is 
unbalanced due to an increase in oxidants or a decrease 
in antioxidants, GI cells undergo oxidative stress. Exog-
enous and endogenous sources of antioxidants and oxi-
dants both have effects on the overall redox state of the 
GI tract. Xenobiotics, including gut microbes, are impor-
tant regulators of redox potential in the GI tract. For 
example, Sannasimuthu A et al. found that mice treated 
with broad-spectrum antibiotics showed a change in the 
“redox potential” of their gut environment [23]. Mito-
chondrial respiratory chain enzymes, including the 
cytochrome P450 enzyme family and xanthine oxidase 
in the endoplasmic reticulum, cytoplasm and nuclear 
membrane, are the main endogenous sources [24–26]. 
Homeostasis of GI cells is influenced in a variety of ways 
by the GI redox state, including modulation of signal-
transduction pathways, induction of DNA strand breaks 
and modifications of proteins and lipids [27–29]. Oxida-
tive stress has been implicated in a series of GI diseases, 
including GI cancers [30].

GI microbes are involved in the occurrence and devel-
opment of GI cancers and influence the redox level of 
the GI tract. Understanding the regulatory mode of GI 
microbes from the redox view may be a guide for the 
prevention and treatment of GI cancers. Therefore, this 
paper reviews the redox changes in cancer-related GI 
microbes and cancer cells affected by GI microbes and 
their metabolites in detail (Fig. 1).

Redox reactions in carcinogenic bacteria influence 
redox balance in the GI tract
GI bacteria are one of the sources of GI redox potential, 
and there are redox systems, including the respiratory 
chain, in GI bacteria. Bacteria are prokaryotes, and their 
respiration mainly occurs on the cell membrane and is 
catalyzed by enzymes on the cell membrane. Therefore, 
the cell membrane is the main site of oxidizing agents 
produced by bacteria. Most oxidants in bacteria are pro-
duced by a continuous univalent electron transfer reac-
tion of oxygen molecules catalyzed by enzymes in the 
respiratory chain (Fig.  2). For example, Escherichia coli 
produces approximately 87% hydrogen peroxide in its 
respiratory chain [31]. Microbes use a very complex elec-
tron transport system to extract energy from the intesti-
nal environment, while the bacterial respiratory cascade 
ultimately transfers electrons to higher redox potential 
receptors in the extracellular space. During normal bac-
terial proliferation, this universal, inducible electron 
outflow mechanism leads to changes in the redox poten-
tial in the GI tract, the extent of which depends on the 
growth stage, microbial population, and physiology of the 
organism [32]. The GI redox potential is also related to 
the intestinal microbial composition. For example, intes-
tinal oxidation status was negatively correlated with the 
abundance of Lactobacillus and Bifidobacterium and pos-
itively correlated with the abundance of Escherichia coli 
[33].

Carmelini et al. indicated that bacterial cells respond 
to oxygen stress in the GI tract by slowing growth and 
regulating the expression of proteins involved in carbo-
hydrate uptake and metabolism, redox homeostasis, the 
DNA damage response and bacterial movement [34]. 
Clostridium butyricum responds to obvious redox during 
the growth process by changing from an oxidized state 
to a reduced state and growing at a slower rate. When 

Fig. 1  The relationship between bacteria, their metabolites, and cancer involves redox reactions. Bacteria and their metabolites regulate cancer through 
redox reactions
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Clostridium butyricum cells undergo stress, the expres-
sion levels of several genes are upregulated, including 
those associated with pyruvate metabolism, the con-
version of acetyl-CoA to acetaldehyde and the stress 
response [35]. Helicobacter pylori is a microaerobic car-
cinogen that encodes a redox switch protein, Hp1021. 
The cysteine residues of Hp1021 are sensitive to oxida-
tion in vitro and in vivo, and the DNA-binding activity 
of Hp1021 to oriC depends on the redox state of the pro-
tein. Hp1021 is directly involved in the oxygen-depen-
dent control of the Helicobacter pylori feca3 and GLUP 
genes, which are related to the oxidative stress response 
[36]. Menadione and H2O2 have been used to induce oxi-
dative stress in the model intestinal bacterium Enterococ-
cus durans (MTCC 3031). Oxidative stress significantly 
reduced the redox ratio (NADPH/NADP) by 55% (mena-
dione) and 28% (H2O2). The reduction in the redox ratio 
caused by oxidative stress decreased bacterial folate 

synthesis. Reduced folic acid levels can induce colorec-
tal cancer [37]. In addition, oxidative stress significantly 
reduced bacterial growth density by 61% (menadione) 
and biological yield by 21% (H2O2) [38].

GI bacteria induce oxidant and antioxidant 
production in cancer cells
Several types of gut bacteria can influence the production 
of oxidants and antioxidants in gastrointestinal cells [39]. 
Oxidants produced by gastrointestinal cells drive abnor-
mal cell proliferation and survival by activating signal-
ing pathways such as HIF-1α. Wen J, et al. indicated that 
Helicobacter pylori infection could significantly upregu-
late the expression of AQP3 and HIF-1α in human gas-
tric epithelial AGS and GES-1 cells and increase ROS 
levels. Helicobacter pylori infection could stimulate the 
ROS-HIF-1α axis and ROS-HIF-1α-AQP3-ROS ring, 
promoting the occurrence of gastric cancer [40]. Zhang X 

Fig. 2  Redox reactions in bacteria regulate the redox level of the gastrointestinal tract. Bacteria obtain the energy needed for growth through the respira-
tory chain and transfer electrons in vivo and in vitro through the respiratory chain at the same time, thereby regulating the redox level in vivo and in vitro. 
Redox regulatory proteins such as HP120 exist in bacteria. Oxidative metabolism in bacteria can affect the production of its metabolites, such as folic acid. 
Reduced production of folic acid contributes to the occurance of cancer. The change in redox level in the gastrointestinal tract caused by bacteria can 
also affect the growth of other bacteria
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et al. reported that Lactobacillus stimulated the produc-
tion of NADPH oxidase-1 (Nox1)-dependent ROS and 
induced cell proliferation of GI stem cells [41]. Lesiow 
MK et al. showed that under the stimulation of two frag-
ments of FomA adherin from F. nucleatum and its com-
plexes with copper (II) [Cu(II)-Ac-KGHGNG-NH2 (1Cu) 
and Cu(II)-Ac-PTVHNE-NH2 (2Cu)], large quantities 
of hydroxyl radicals were produced inside and outside 
of colon cancer CT-26 cells. The intense oxidative stress 
caused by these compounds could trigger a cascade of 
free radicals in CT-26 cells, leading to substantial lipid 
peroxidation [42]. Microbes in the GI tract may also 
increase oxidation levels by reducing antioxidant lev-
els. For example, Nie Seru et al. found that Clostridium 
infection in gastric cancer was negatively correlated with 
three metabolites, including glutathione, uric acid and 
pyrophosphate, and confirmed that glutathione levels 
decreased if the nuclear abundance of Clostridium was 
high. In addition, some microorganisms in the GI tract 
can reduce high oxidation levels by upregulating the 
expression of antioxidants in GI cells [43]. In GES-1 cells 
with acute infection, nuclear Clostridium upregulated 
GSH peroxidase 4 (GPX4) and GSH synthetase (GSS) 
expression and reduced glutathione (GSH) to oxidized 
glutathione (GSSG), resulting in the reduction of intra-
cellular ROS levels and increasing the ability of cells to 
combat self-damage [44]. Wang Yue et al. showed that 
Streptococcus thermophilus CGMCC 7.179, under oxi-
dative stress induced by 2 mm H2O2, could improve the 
activities of major antioxidant enzymes (superoxide dis-
mutase, glutathione peroxidase and catalase) in CRC 
HT-29 cells and protect CRC cells against oxidative stress 
[45, 46].

Excess oxidants from the GI tract or GI cells may be 
involved in the destruction of DNA, proteins and 
lipids in cancer cells
Excess oxidants are involved in cancer cell DNA damage
GI symbiotic microbes affect genomic stability in GI cells 
by overproducing oxidants. Enterococcus faecalis and 
Bacteroides fragilis have been found to be associated with 
colorectal cancer, and Enterococcus faecalis and Bacte-
roides fragilis infection are accompanied by excess ROS 
production [47, 48]. ROS can induce DNA base oxida-
tion (e.g., formation of 8-oxo guanine) and single strand 
breaks, which can be repaired by base excision/single 
strand breaks. Both base excision repair and single strand 
break repair are performed by DNA polymerase, which 
forms long or short fragments that are ligated under the 
action of DNA ligase III or DNA ligase I. If single strand 
breaks and base excision repair/single strand break repair 
occur simultaneously on opposing strands, DNA dou-
ble-strand breaks can be generated [49–52]. Wang S et 
al. found that Helicobacter pylori infection could induce 

gastric cancer cells to activate the NF-κB signaling path-
way and upregulate peroxyredoxin2 (PRDX2) expres-
sion [53, 54]. ROS can affect replication fork progression 
through the dissociation of PRDX2 oligomers. PRDX2 
can form a replica-related ROS sensor. The ROS sensor 
is combined with the DNA replication fork accelerator 
Timeless. The increase in ROS leads to the separation of 
PRDX2 and Timeless, thus slowing the speed of replica-
tion bifurcation [55]. Oxidized bases occurring from ROS 
activity also present a physical obstacle to replication 
forks, resulting in the breakdown of replication forks at 
fragile sites across the genome [56, 57]. Fork breakdown 
leads to DSBs and ultimately underreplicated or over-
replicated DNA, with concomitant genomic instability in 
cancer cells. Chronically high ROS levels can outpace a 
host’s DNA repair mechanisms, leading to DNA damage 
and mutations [58]. At present, ROS have not been found 
to directly affect the function of DNA double-strand 
break repair proteins. Break-induced replication has been 
recently implicated in the repair of replication stress or 
nuclease-induced DNA double-strand breaks at telo-
meres [59]. With the clinical implications of interfering 
with DNA repair pathways becoming apparent, the direct 
effect of bacteria-inducing ROS on DNA repair proteins 
requires more investigation.

Excess oxidants are involved in the redox modifications of 
proteins in cancer cells
Multiple studies have suggested that ROS participate in 
a series of biological processes, such as metabolism and 
oxidative stress defense. The common mode of action of 
ROS is to react with the nucleophilic mercaptan group (-- 
SH) in a specific protein cysteine, which results in a series 
of oxidative posttranslational modifications (oxiPTM). 
Mercaptan can be oxidized to S-sulfinic acid (–-SOH) 
by ROS. S-sulfinic acid has high activity and can be 
continuously converted into more stable forms, includ-
ing S-sulfinic acid (–-SO2H) and disulfide (–SS-). The 
cysteine regulation of reversible oxidized proteins is an 
important mechanism that changes the function of pro-
teins after translation [60, 61]. The metabolic enzymes in 
many metabolic processes, including glycolysis, the tri-
carboxylic acid cycle, lipid metabolism, energy metabo-
lism and amino acid metabolism, could be regulated by 
redox modification [62–64]. Escherichia coli may induce 
metabolic reprogramming changes in heterogeneous 
cancer cell populations by modulating glycolytic path-
way-inducer genes and oxidative phosphorylation-related 
genes (such as pyruvate dehydrogenase kinase 1, pyru-
vate dehydrogenase phosphatase, and malonyl-CoA-acyl 
carrier protein transacylase). After metabolic reprogram-
ming, the migration and self-renewal capacity of cancer 
cells can be enhanced [65]. ROS produced by bacteria 
and GI cells can oxidize cysteines 45 and 392 of PDHK2 
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(Cys45 and Cys392), thereby inhibiting PDHK2 activity, 
dephosphorylating PDH, and ultimately promoting the 
tricarboxylic acid cycle [66]. As a result, cancer cells can 
continuously obtain the energy they need to survive.

Excess oxidants are involved in the redox modifications of 
lipids in cancer cells
Lipids are one of the main structural and functional com-
ponents of biological tissue, especially the cell membrane. 
After lipid peroxidation, GI cell membrane fluidity and 
cell membrane properties are changed [67, 68]. Excess 
peroxidation of free radicals can lead to iron overload 
[69]. Membrane-associated phospholipid peroxide glu-
tathione peroxidase (GPX4) protects against iron-asso-
ciated cell death by preventing the accumulation of lipid 
peroxide, demonstrating the damage of excess oxidants 
to lipids on GI cancer cell membranes [70]. Oxidants on 

the GI cell membrane regulate signaling receptors on the 
cell membrane and various downstream signaling path-
ways, including cytokines such as tumor necrosis factor 
(TNF) and growth factors such as epidermal growth fac-
tor receptor (EGFR)[71]. Alterations in signaling recep-
tors on the membrane of GI cancer cells can affect the 
function of cancer cells.

Excess ROS-mediated destruction of DNA, proteins 
and lipids is shown in Fig. 3.

Microbial metabolites are involved in cancer cell 
redox reactions
Bacteria can interact with GI cancer cells by secreting 
metabolites, including short-chain fatty acids (SCFAs), 
sulfides, gas molecules and even specific metabolites.

Fig. 3  Bacteria regulated redox reactions in gastrointestinal epithelial/cancer cells. Bacteria link to gastrointestinal epithelial/cancer cells through their 
receptors or secreting metabolites, affecting the release of ROS from gastrointestinal epithelial/cancer cells. The overproduction of ROS can lead to DNA 
single strand breaks, DNA double strand breaks, DNA recombination repair system damage, and DNA mutations. Excess ROS mainly act on the sulfhy-
dryl (RSH) side chain of the active cysteine of the protein (metabolism-related enzyme). In response to ROS, the reduced sulfhydryl groups on cysteine 
deprotonate and are oxidized to form sulfenic acids (RSOH). Subsequently, sulfonic acid can react with o-sulfhydryl groups to form intramolecular or in-
termolecular disulfide bonds (RS-SR or RS-SR’) or bind to glutathionylation (RS-SG) of glutathione (GSH). Sulfonic acid can also be further oxidized to form 
sulfonic acids (RSO2H) or sulfonic acids (RSO3H). The modified protein usually loses activity or function. Excess ROS react directly with polyunsaturated 
fatty acids on the cell membrane, causing cell membrane protein damage and influencing signal receptors on the cell membrane and various down-
stream signaling pathways, including the EGFR, TNF, and Wnt signaling pathways
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SCFAs compete against oxidative stress in cancer cells
Colonic bacteria such as Clostridium butyricum and 
Lactobacillus can produce SCFAs, which mainly include 
acetate, butyrate acid, lactate, and propionate acid. The 
health benefits of SCFAs are related to their ability to reg-
ulate gene expression [72–75]. For example, Escherichia 
coli can mediate the protective effect of SCFAs on oxida-
tive stress through the KEAP1-NRF2 signaling pathway. 
Under static conditions, NRF2 is blocked by its cytoplas-
mic inhibitor KEAP1 (Kelch-like Ech-associated protein 
1). However, under oxidation and electrophilic stress, 
NRF2 can be synthesized and accumulate in the nucleus. 
NRF2 binds small Maf protein to antioxidant response 
elements (ARE) in target gene promoters and upregu-
lates the expression of phase II enzymes and antioxidant 
enzymes to combat oxidative stress [76]. The epigenetic 
regulation of butyrate-induced NRF2 nuclear transloca-
tion is the main mechanism of antioxidant action [77]. 
Inhibitor for the apoptosis-stimulating protein of p53 
(IASPP) in cancer cells can improve the stability of the 
NRF2 protein and promote the nuclear translocation of 
NRF2 by competitively binding the main inhibitory fac-
tor Keap1 of NRF2 with the DLT amino acid sequence 
(motifs) located at its N-terminus. NRF2 transcrip-
tional activation of its downstream antioxidant target 
genes (such as NQO1, HMOX1 and FTH1) plays a role 
in ROS inhibition [78]. Moreover, Pant K et al. reported 
that butyrate could induce ROS-mediated apoptosis by 
modulating the miR-22/SIRT-1 pathway in hepatic can-
cer cells [79]. Inoue T et al. reported that butyrate could 
mediate ROS-related apoptosis through a complex sig-
naling feedback loop involving p21, ROS, and p53 [80, 
81]. Schlörmann W et al. reported that butyrate could 
mediate ROS-related proliferation and apoptosis by reg-
ulating antioxidant-relevant proteins (Cyclin D2, p21, 
PARP, Bid, GPx2) in colon cancer cells [82].

Gas molecules are involved in cancer cell antioxidative 
stress
Sulfur-metabolizing microbes, including Bilophila wad-
sworthia, Fusobacterium nucleatum, and Desulfovibrio, 
have the capacity to metabolize organic compounds for 
energy and reduce dietary sulfur to hydrogen sulfide 
(H2S) [83, 84]. The abundance of sulfur-reducing bacte-
ria in the colonic mucosa of patients with CRC, such as 
Bilophila wadsworthia and Pyramidobacter, was higher 
than that of healthy individuLA [85, 86]. H2S is mainly 
synthesized by L-cysteine and L-homocysteine through 
cystathionine-B-synthasecbs, 3-mercaptopyruvate thio-
transferase (3-MST) and cysteine-Y-lyase (CTH/CSE). 
At 37  °C and pH 7.4, excess H2S molecules can dissolve 
in water and decompose into H+, HS− and S2− ions. 
HS− has strong single-electron chemical inertia and has 
considerable scavenging capacity for ROS. Excessive 

H2S production may inhibit carcinogenesis through 
several mechanisms, including the Wnt signaling path-
way, microRNA regulation and cancer metabolism. For 
instance, excess H2S can upregulate the expression of 
miR-200b and miR-22. Wnt1 was found to be a target 
of these two miRNAs, and a synergistic effect between 
miR-200b and miR-22 in the inhibition of gastric cancer 
growth was reported [87–89].

Nitrobacter and Nitrosomonas can produce NO in the 
gut [90]. The interaction between O2 and NO leads to 
the formation of peroxynitrite (ONOO). The increased 
reactivity of peroxynitrite leads to the production of vari-
ous other NO-derived factors, called reactive nitrogen 
species (RNS), including reactive radical compounds 
nitrogen dioxide (NO2), hydroxyl radical (HO), and non-
free radical dinitrogen trioxide (N2O3). ONOO, together 
with RNS, is responsible for protein tyrosine residue 
nitrosation, mitochondrial energy consumption, and the 
induction of DNA strand breaks [91–93]. NO in the sub-
micromolar range (< 1  μm) can reversibly inhibit cyto-
chrome-c oxidase. It may transiently increase the leakage 
of superoxide from the electron transport chain. Then, 
superoxide can react with NO to generate peroxynitrite, 
which inactivates the iron/sulfur centers in cancer cell 
mitochondria and causes irreversible injury to the mito-
chondria [94]. Nitrite (NO2

−) and nitrate can transfer an 
(NO) + moiety to exocyclic amino groups of DNA bases 
(purine nucleosides and nucleotides). N-nitro tyrosine 
residues produce uracil. Removal of uracil by uracil gly-
cosylase without restoration of cytosine leaves an aba-
sic site. A lesion is commonly misrepaired by insertion 
of adenine opposite the site during replication. Misre-
pair can produce a G:C-A:T transition. Hence, nitrifi-
cation and deamination may lead to genetic changes in 
living cells [95]. High concentrations of exogenous NO 
are mainly toxic to cells and microorganisms, which is 
reflected in the inhibition of bacterial growth and the 
regulation of biofilm formation [96]. During cancer che-
motherapy, NO can accumulate in cancer cells, resulting 
in cytotoxic and anticancer effects [97].

Other gaseous molecules, such as H2O2 [98, 99] and 
H2 [100, 101], are additional metabolites of microorgan-
isms that may play important roles in multiple systems 
throughout the body.

Specific metabolites are involved in regulating cancer cells
Lactobacillus reuteri and its oxidation metabolite 
reuterin inhibit ribosomal biogenesis and downstream 
protein translation in SW480 cell lines, thereby inhibit-
ing cancer growth in vitro [102]. Lactobacillus reuteri 
is a natural colonizer of the human gut, and reuterin is 
an intermediate product of the conversion of glycerol 
to 1,3-propanediol [103]. Reuterin is a highly selective 
electrophilic substance that can interact with cysteine, 
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resulting in irreversible oxidation, loss of protein func-
tion, and cell death [104]. Sodium sulfide protects 
colorectal cancer cells from reuterin-induced growth 
inhibition by binding to cysteine, resulting in protective 
and reversible oversulfidation that prevents protein oxi-
dation. β-Galactosidase secreted by Streptococcus ther-
mophilus can inhibit cell proliferation, reduce colony 
formation, induce cell cycle arrest, promote apoptosis of 
cultured CRC cells and retard the growth of CRC xeno-
grafts. The β-galactosidase-dependent production of 
galactose interferes with energy homeostasis to activate 
oxidative phosphorylation and downregulate Hippo path-
way kinases, partially mediating the anticancer effects of 
S. thermophilus [105]. Lactobacillus brevis can produce 
NADPH oxidase (NOX) in an aerobic environment [106]. 
ROS produced by NOX inactivate nucleoredoxin, thus 
releasing nucleoredoxin-dependent Wnt-β-catenin sig-
nal inhibition through the separation of nucleoredoxin 
and dishevelled. NOX inhibits the response of cells to 
Wnt, including stabilizing β-catenin, expressing cyclin 
D1 and c-Myc through the TCF transcription factor, and 
accelerating cell proliferation. In colon cancer cells with 
a normal Wnt pathway, Nox1 mediates Wnt-induced 
cell growth, but not in APC-deficient colon cancer cells, 
which have constitutive Wnt signaling activity [107, 108].

Application and treatment
ROS concentration is directly related to cancer cell death. 
Regulating ROS concentrations can be a cancer therapy 
stategy [109]. Based on this, synthetic biological modifi-
cation of bacteria to regulate redox levels in the gut has 
been developed as a potential anticancer treatment. Fan 
et al. designed and engineered a bacterium, Escherichia 
coli MG1655, which overexpressed the NDH-2 (Type-
II NADH-Menaquinone Oxidoreductase) enzyme to 
colonize cancer areas and increase local H2O produc-
tion. In their study, magnetic Fe3O4 nanoparticles were 
covalently linked to bacteria to convert H2O2 into toxic 
hydroxyl radicals (•OH) for cancer treatment [110]. Esch-
erichia coli Nissle 1917 (EcN) is an oral probiotic that has 
been genetically engineered to overexpress catalase and 
superoxide dismutase to restore redox levels in the gut, 
thereby alleviating GI diseases [111]. Onaida Shewanella 
MR-1 (SO) can selectively use lactic acid instead of glu-
cose as an energy source for respiration. During lactic 
acid consumption, SO can simultaneously mediate the 
electron transfer process that transforms reduced iron 
ions to bivalent iron ions. The resulting ferric ions can 
also be reoxidized to ferric ions by overexpressed hydro-
gen peroxide, thus achieving cyclic lactic acid catabolism. 
Using the principle of SO redox, an Onaida Shewanella-
coupled MDH (an MOF material loaded with adriamy-
cin) self-driven bioreactor was constructed. SO@MDH 

can enhance the chemotherapy effect of GI tract cancer 
and alleviate cancer [112–114].

Restoring ROS levels in the GI tract is a favorable way 
to alleviate GI diseases, including cancer. ROS nanoss-
cavengers can be delivered to the GI tract to enhance 
the clearance of ROS by using the intestinal coloniza-
tion ability of probiotics. In addition, a protective layer 
can be included on the surface of probiotics to enhance 
the environmental resistance and intestinal adhesion of 
probiotics and regulate the balance of GI microbes [115–
118]. For example, the probiotic Saccharomyces cerevi-
siae JKSP39 might regulate GI microbes by reducing the 
levels of ROS (myeloperoxidase, superoxide dismutase, 
catalase, H2O2, and malondialdehyde) to inhibit endo-
plasmic reticulum (ER) stress [115]. Hydrogel-coated 
Lactobacillus reuteri could partially remove ROS from 
the GI tract and protect colon HT-29 cells from oxidative 
damage [116]. EcN can restore ROS levels in the GI tract, 
enhance the abundance and diversity of GI microbes, 
and prevent and treat CRC-related diseases such as coli-
tis. The retention time of EcN in the GI tract can be pro-
longed by coupling hyaluronic acid-polypropylene sulfide 
nanoparticles (HPNs) to the surface of modified EcN 
using a polymer of hyaluronic acid-polypropylene sulfide 
(HA-PPS) and encapsulating EcN cells with a polynor-
epinephrine layer. The prolonged presence of HPN-NE-
EcN in the gut assists the ROS scavenging ability of EcN, 
thereby alleviating GI diseases [117].

Conclusion
A large number of studies have shown that GI microbes 
such as Escherichia coli and Helicobacter pylori play an 
important role in the development of GI cancer. GI bac-
teria participate in the regulation of redox potential in 
the GI tract through the electronic respiratory chain and 
the release of metabolites. GI bacteria dynamically regu-
late their redox reaction according to the redox potential 
in the GI tract. GI bacteria can also regulate the redox 
potential of cancer cells by affecting the production of 
oxidants and antioxidants in GI cancer cells. Once oxi-
dants (such as ROS) from the GI tract or cancer cells are 
present, the redox balance and homeostasis of cancer 
cells are destroyed. This imbalance causes redox-medi-
ated modifications of various cellular components, such 
as DNA, lipids and proteins that then change the func-
tion of cancer cells. However, GI bacteria can also com-
bat oxidative stress in cancer cells by releasing substances 
such as short-chain fatty acids, NO, and specific metabo-
lites such as Reuterian proteins and NADPH oxidase.

In conclusion, GI microbes play an important role in 
the regulation of GI cancer-related redox levels. Using GI 
microbes to reduce ROS levels in the GI tract may be a 
beneficial pathway for alleviating GI diseases, including 
cancer.
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