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While it is well-established that climate change is likely to 
exacerbate the occurrence of cholera in the region [1–4], 
it remains unclear how the relationship between cholera 
and climate has changed over time. Further, the major-
ity of research has considered the question in relation 
to Bangladesh. In this article we consider the context of 
Kolkata, the capital of West Bengal. We seek to answer 
the question of how the relationship between cholera and 
interannual climate variables has evolved in the past cen-
tury in this city, and its implications for the future.

Oscillating interannual climate patterns have previ-
ously been implicated in cholera dynamics in Bangladesh 

Introduction
Cholera is a highly infectious disease that has plagued 
humanity for centuries. The Bengal Delta, a vast area 
consisting of Bangladesh and the Indian state of West 
Bengal, has been severely affected by endemic cholera, 
with climate playing a significant role in its persistence. 
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Abstract
Background In the Bengal Delta, research has shown that climate and cholera are linked. One demonstration of 
this is the relationship between interannual ocean-atmospheric oscillations such as the El Niño Southern Oscillation 
(ENSO) and the Indian Ocean Dipole (IOD). What remains unclear in the present literature is the nature of this 
relationship in the specific context of Kolkata, and how this relationship may have changed over time.

Results In this study, we analyse the changing relationship between ENSO and IOD with cholera in Kolkata over 
recent (1999–2019) and historical (1897–1941) time intervals. Wavelet coherence analysis revealed significant non-
stationary association at 2–4 year and 4–8 year periods between cholera and both interannual timeseries during both 
time intervals. However, coherence was notably weakened in the recent interval, particularly with regards to ENSO, a 
result supported by a complementary SARIMA analysis. Similar coherence patterns with temperature indicate it could 
be an important mediating factor in the relationship between cholera and oscillating climate phenomena in Kolkata.

Conclusions This study reveals a shifting relationship between cholera and climate variables (ENSO and IOD) in 
Kolkata, suggesting a decoupling between environmental influences and cholera transmission in recent years. 
Our results therefore do not suggest that an intensification of ENSO is likely to significantly influence cholera in the 
region. We also find that the relationship between cholera and interannual climate variables is distinct to Kolkata, 
highlighting the spatial heterogeneity of the climate-cholera relationship even within the Bengal Delta.
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[5–7], which constitutes most of the Bengal Delta region. 
Specifically, in this study we consider the relationships 
between two interannual climate phenomena: the El 
Niño Southern Oscillation (ENSO) and the Indian Ocean 
Dipole (IOD). ENSO is a recurring ocean-atmospheric 
climate pattern characterized by oscillating sea surface 
temperature (SST) changes in the Tropical Pacific Ocean 
that impact weather patterns in the Bengal Delta and 
across the globe. El Niño events, marked by anomalously 
warm SSTs, and La Niña events, marked by anomalously 
cool SSTs, cause changes in the Walker Circulation, an 
atmospheric system in which westerly “trade winds” 
across the surface of the Pacific Ocean rise over the 
western Pacific, causing higher air pressure, and return 
eastwards aloft [8]. During El Niño events, the Walker 
Circulation is significantly diminished, resulting in 
changes to the Bengal Delta’s atmosphere such as higher 
regional temperatures [9, 10] and reduced precipitation 
[11, 12]. The IOD refers to a similar oscillating climate 
phenomenon which occurs within the Indian Ocean and 
describes the relative changes in SST between the east-
ern and western sides. The IOD has been shown to be an 
important modulator of Indian monsoon rainfall and air 
temperatures across South-East Asia [7, 13].Apart from 
changes in climate contexts, Kolkata’s water and sanita-
tion context has also evolved over the past century. The 
Pulta Water Works were established in Kolkata in 1868 to 
provide a municipal treated potable water supply to the 
entire city. By 1902, all masonry houses were connected 
to the mains water supply, and group housing and slums 
areas were provided with at least one common standpipe. 
The potable water supply was treated using simple tech-
niques, primarily slow sand filtration and desilting tanks, 
and was supplied intermittently with an average supply of 
109  L per capita per day. In contrast, modern day Kol-
kata provides a more comprehensive treatment process 
that includes chlorination and supplies around 240 L per 
capita per day [14]. Furthermore, the population den-
sity has more than doubled from 10,795 population per 
sq.km in 1911 [15] to 24,252 in 2011 [16]. Moreover, the 
city’s population growth has led to urban expansion to 
the East resulting in a greater proportion of the popula-
tion living further from the Hooghly River. Our hypoth-
esis is that cholera has partially de-coupled from climate 
over the past century, owing to a reduction in exposure 
the pathogens in the environment via improved sanita-
tion and water treatment, as well as an increased role of 
demographic effects, such as over-population.

Wavelet analysis provides a powerful mechanism to 
quantify the temporal dynamics and non-stationary rela-
tionships in epidemiological time series [17]. Its appli-
cation is particularly effective in analysing the effect 
of complex climate phenomena like El Niño-Southern 
Oscillation (ENSO) and Indian Ocean Dipole (IOD), 

which exhibit interannual variability and whose impacts 
fluctuate over time. Traditional statistical methods, such 
as correlation and regression analysis, are ill-suited for 
these types of data as they assume a stationary relation-
ship over the entire time series, which is rarely the case 
with such climate indices. In contrast, wavelet analysis 
can accurately capture and localize the changes in signal 
frequency and intensity over time, providing an optimal 
blend of both time and frequency domain information. 
By incorporating the time-frequency localization prop-
erty, wavelet analysis permits the detection of changes 
in periodicity and strength of climate phenomena, and 
thus, allows for a deeper understanding of the intricate 
relationships and interactions between different climate 
variables. This makes it a key tool for evaluating changes 
in climatic influences over time and enhancing our capa-
bility to predict future climate scenarios based on his-
torical data. As a result, wavelet analysis has become a 
commonly used tool to measure the relationship between 
climate variables and infectious diseases (e.g. [18–21].).

In this study, we utilize two longitudinal epidemio-
logical datasets for cholera in Kolkata. The first comes 
from a historical cholera mortality dataset covering the 
45-year interval 1897–1941 when the region was part 
of British India and known as Calcutta. The second is 
a hospital dataset describing confirmed cholera cases 
during the 21-year interval 1999–2019. In analysing the 
time-varying strength of association between cholera 
and climate variables over these two intervals we will 
provide evidence that the climate-cholera relationship is 
non-stationary, suggest mediating factors and discuss its 
implications for climate change.

Materials and methods
Epidemiological dataset
To measure the burden of cholera during the recent 
interval we used a dataset of stool samples from diar-
rhoeal patients who reported to the Infectious Disease 
Hospital (IDH) in Kolkata under their diarrhoeal sur-
veillance system during the 12 years 2008–2019. These 
data were obtained from the Indian Council of Medical 
Research - National Institute of Cholera and Enteric Dis-
eases (ICMR-NICED). In the surveillance system, every 
fifth patient on two randomly selected days of the week 
(representing around 6% of total patients) were tested for 
several pathogens including O1 and O139 Vibrio Chol-
erae. We extracted the monthly number of samples which 
tested positive for either O1 or O139 Vibrio Cholerae.

For the historical interval, we obtained cholera mor-
tality data from Sanitary Commissioner of Bengal 
reports from 1897 to 1941 [15]. To account for changes 
in population, we adjusted these values annually using 
linear interpolation based on decadal census data from 
1891 to 1931. Two years of data were missing from the 
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1897–1941 dataset (namely 1933 and 1939), which we 
imputed using seasonally decomposed missing value 
imputation to create continuous time series datasets nec-
essary for use in wavelet coherence analysis. This method 
allows the imputed values to retain the seasonal trend 
present in the rest of the dataset by removing the sea-
sonal component before imputation, then returning the 
seasonal component.

While the epidemiological dataset used in the histori-
cal analysis describes mortality rather than infections, 
we consider it a reliable proxy for cholera infections over 
time. While improvements in cholera treatment were 
made during the historical period, it is unlikely that the 
majority of the population had access to these treat-
ments, and changes to mortality rates remained con-
sistent at around 60% [22]. Even if a steady decline in 
mortality rate occurred over the historical period, this 
likely would have appeared as a gradual trend in the time 
series signal and would not affect the shorter period fre-
quencies considered in the wavelet analysis.

Climate dataset
To measure ENSO, we used sea surface temperature 
(SST) anomaly from the Niño 3.4 region, an equato-
rial area in the Pacific Ocean bound by the coordinates 
[5°N-5°S, 170°-120°W], known to characterise well the 
strength of ENSO [23]. To provide an estimate for this, 
we extracted monthly SST from Niño 3.4 during the time 
periods 1897–1941, and 1999–2019 from the Hadley 
Centre Sea Ice and Sea Surface Temperature (HadISST) 
dataset (https://psl.noaa.gov/gcos_wgsp/Timeseries/
Nino34/) [24]. In order to convert to the standard Oce-
anic Niño Index (ONI), we first smoothed the data to 
obtain a 3-month rolling mean. We then de-seasonalised 
and standardized the data (i.e. taking the temperature 
anomaly) by subtracting the 50-year monthly mean 
from the period 1891–1941 for the historical period, and 
1970–2020 for the modern period.

To measure the intensity of the IOD, we use the 
Dipole Mode Index (DMI) which describes the ratio 
between SST in the western equatorial Indian Ocean 
[10°S-10°N,50°-70°E] and the south-eastern equato-
rial Indian Ocean [10°S-0°N,90°-110°E]. This index was 
extracted directly from NOAA DMI dataset (https://psl.
noaa.gov/gcos_wgsp/Timeseries/DMI/) during the same 
time periods as Niño 3.4 SST.

Analysis
The wavelet analyses in this study were conducted using 
the R package {biwavelet} [25]. The wavelet transform, 
X(a, τ ), describes the contribution of an individual of 
periodic component with frequency a  of a time series 
signal at time τ  in the form of a ‘mother’ wavelet. The 
transform is described mathematically as in Eq. 1.

 
X (a, τ ) =

1√
|a|

∫ ∞

−∞
x (t)ψ∗

(
t− τ

a

)
dt  (1)

Where x (t)represents the time series under consider-
ation and * denotes the complex conjugate form. ψ (t) 
represents the ‘mother’ wavelet. In our methodology 
we employed the complex Morlet wavelet [26] which is 
commonly used in infectious disease modelling due to 
its ability to produce wavelet transforms with a high fre-
quency resolution [17]. The shape of a Morlet Wavelet 
is essentially a complex sine wave tapered by a Gaussian 
and is described by Eq. 2 [27]

 ψ (η) = π−1
4eiω0ηe−

η2

2  (2)

Here, ω0 is the nondimensional frequency of the Morlet 
wavelet and is taken as 6 (as in [27]) to satisfy the admis-
sibility conditions described in [28].

Power spectrum
Since the mother wavelet is complex, the resulting trans-
form is also complex. In order to describe the results 
on the real plane, we therefore consider the real-val-
ued wavelet ‘power’ which is taken as the square of the 
amplitude.

 
Power (a, b) =

1

a
· |X (a, b)|2 (3)

Wavelet coherence
In order to quantify the similarity between two time 
series, we call upon the concept of wavelet coherence 
[27]. Wavelet coherence analysis uses wavelet trans-
formation to decompose two time-series signals and 
provides a coherence value between 0 and 1. This value 
describes the level of correlation between the two decom-
posed signals where 1 indicates perfect coherence.

Wavelet coherence can be considered analogous to a 
simple correlation coefficient but measured in the fre-
quency and time domain. This is described by Eq. 4.

 
Cohxy =

|s (Xx (a, b) ·Xy (a, b))|2

s (PowerX (a, b)) · s (Powery (a, b))
 (4)

SARIMA analysis
To evaluate the predictive power of ENSO and IOD vari-
ables on cholera incidence across various time periods, 
we employ Seasonal Autoregressive Integrated Moving 
Average with eXogenous variables (SARIMAX) mod-
els. These models improve upon standard regression 
techniques in time series analysis, primarily due to their 

https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
https://psl.noaa.gov/gcos_wgsp/Timeseries/Nino34/
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/
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ability to manage autocorrelation, as well as potential sea-
sonal or long-term trends, which are common features in 
time series data. The SARIMAX models accommodate 
these features through the inclusion of autoregressive 
components and a moving average. Furthermore, they 
tackle non-stationarity in time series by implementing a 
process known as differencing.

Building a SARIMAX model requires the estimation of 
six parameters: the order of autoregressive terms (p), the 
degree of differencing (d), the order of the moving aver-
age model (q), as well as their seasonal counterparts (P, D, 
Q). To optimize these parameters, we utilized the auto.
arima() function from the {forecast} package in R [29]. 
This function evaluates multiple parameter combinations 
and selects the one with the smallest Akaike Information 
Criterion (AIC), effectively automating the model selec-
tion process.

The optimal lag for our models is determined via cross-
correlation functions (CCFs) computed between pre-
whitened cholera and climate variable time series. The 
pre-whitening process begins with the automated selec-
tion of a suitable SARIMA model for the climate variable. 
Following this, a univariate SARIMA model - possessing 
identical parameters to the previously selected one - is 
applied to the cholera time series for the respective time 
interval. The residuals of these SARIMA models serve 
as our pre-whitened time series. The purpose of pre-
whitening is to eradicate any misleading correlations that 
could be influenced by shared trends or autocorrelations 
in the data.

Limitations
Our mediation analysis was confined to three variables: 
temperature, rainfall, and coastal SST.

However, there could be other mediating factors which 
were not considered in this analysis. For example, sea 
surface height (SSH) in the Bay of Bengal is known to be 
strongly influenced to equatorial winds and as such has 
been linked to both ENSO [30] and IOD [31]. SSH has 
also been linked to increased cholera cases [32, 33] in the 
Bengal delta suggesting its potential as a mediating factor. 
Another plausible mediating factor is chlorophyll con-
centration in the Bay of Bengal. Positive IOD events have 
also been demonstrated to increase chlorophyll concen-
tration in the Bay of Bengal due to increased upwelling 
which leads to more nutrient-rich subsurface waters [34]. 
This in turn has been shown to increase cholera cases in 
the Bengal Delta via increased V.cholerae concentration 
[2, 35].

Results
During the historical time period, a total of 79,257 chol-
era deaths were recorded in Calcutta over 45 years. Dur-
ing the recent time period, a total of 2479 confirmed 

cholera cases were recorded over 21 years. The time 
series for cholera, Dipole Model Index (DMI) and the 
Oceanic Niño Index (ONI) during the two time periods 
considered are shown in Figs. 1 and 2. The cholera data 
revealed a persistent seasonal endemic signature with 
particularly large outbreaks occurring in 1897,1907, 1908, 
and 1919 during the historical interval, with less pro-
nounced anomalous outbreaks during the recent interval. 
Additionally, significant shifts in cholera patterns can be 
observed between the two distinct periods (Figure S2). 
During the historical interval, cholera mortality was low-
est during the monsoon season (July-September), with 
cases rising post-monsoon and peaking in the summer 
heat (March-May). However, during the recent interval, 
the highest incidences of cholera align with the monsoon 
season, though a secondary, less pronounced peak is also 
observed in the summer.

The wavelet transforms identified the dominant mode 
as annual (Fig.  3) during both time intervals, indicating 
the seasonal nature of the disease. There are also signifi-
cant modes at the sub-annual scale for both time inter-
vals. Further, while not statistically significant at the 95% 
confidence interval, areas of higher periodicity can be 
witnessed at the 2–4 year period in the recent time inter-
val, and within the 4–8 year period in both time intervals.

The wavelet coherency between cholera and interan-
nual indices are shown in Fig. 4. The coherence between 
DMI and cholera is non-stationary but significant dur-
ing both historical (Fig.  4a) and recent (Fig.  4b) inter-
vals. Significant coherency was observed at 2–8 year 
periods during all dates considered, with particularly 
strong coherency (> 0.8) occurring between 1905 and 
1915 at the 2–5 year period and between 2005 and 2010 
around the 3–6 year periods. With regards to the coher-
ence between ONI and cholera (Fig.  4c), the relation-
ship appears strongest in the earlier part of the historical 
interval particularly dataset around the 2 year period 
between 1910 and 1920 and periods between 4 and 8 
years from 1915 to 1922. However, after 1922, while peri-
odicity remains significant around the 4 year period and 
for a short period 1931–1934, the strength of the coher-
ence is much reduced. This reduced coherency remains 
present in the recent dataset (Fig. 4d) where a weak but 
significant coherency remains in the 4–8 year period.

To delve further into the relationships between cholera 
and interannual climate variables and consider potential 
mediating factors, we next considered the relationship 
between both DMI and ONI and the variables tem-
perature, rainfall, and coastal SST (Fig.  5). The analysis 
revealed a strong periodicity within the historical data-
set between ONI and temperature (Fig. 5a), but not ONI 
and rainfall (Fig. 5c) or SST (Fig. 5e), within the 4–8 year 
period where cholera shares periodicity with ONI over 
the time interval 1905–1925 (Fig.  4C). Further, a highly 
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similar pattern is witnessed in the coherency between 
temperature and cholera over the historical dataset 
(Fig.  6a), and is not present in the coherency between 
cholera and rainfall (Fig.  6c) or SST (Fig.  6e). This sug-
gests that temperature may be a mediating factor in the 

relationship between ENSO and cholera in the historic 
dataset. Interestingly, while temperature remains signifi-
cantly associated with ENSO in the recent time interval, 
the relationship between cholera and ENSO is much 
reduced.

Fig. 2 Monthly time series for recent (1999–2019) dataset. (A) Recorded cholera cases. (B) Oceanic Nino Index. (C) Dipole Mode Index

 

Fig. 1 Monthly time series for historical (1897–1941 datasets). (A) Cholera deaths in Calcutta adjusted for changes in population. (B) Oceanic Nino Index 
(ONI). (C) Dipole Mode Index (DMI)
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Another interesting finding is the strong similarity 
between the coherency patterns within the recent data-
set for DMI and cholera (Fig. 4b), DMI and temperature 
(Fig. 5h), and temperature and cholera (Fig. 6b). All three 
plots demonstrate a highly similar oval shape of strong 
coherency from 2002 to 2012 across the 4–8 year period. 
This could again suggest that temperature is a mediating 
factor in the relationship between the IOD and cholera in 
the recent dataset. Within the historical dataset, despite 
a significant and reasonably strong (> 0.6) coherency 
between DMI and cholera during the earlier half of the 
historical dataset (Fig.  4a), there is limited correspond-
ing coherency between DMI and any of the three weather 
factors (Fig. 5g,i,k). Our results therefore support the role 

of temperature as a mediating factor in the relationship 
between IOD and cholera in the recent period, but do 
not indicate a mediating factor for the historical period.

The results of our SARIMA analysis largely agree with 
the results of the wavelet analysis. CCF analysis (Fig-
ure S1) found that, during the historical interval, both 
ONI and DMI showed significant correlations with 
maximum lags occurring at 2 months (r = 0.10) and 8 
months (r = 0.13) respectively. Both variables improved 
the SARIMA model (Table  1) for historical cholera as 
regressors, with ONI conferring the greatest improve-
ment with a reduction in AIC of 13.2%. With regards to 
the recent interval, in line with findings from the wavelet 
analysis, we found that the ONI/cholera relationship was 

Fig. 4 Wavelet coherence bewteen (a) DMI and population adjusted cholera mortality during the historical time interval, (b) DMI and recorded cholera 
cases during the recent time interval, (c) ONI and population adjusted cholera morality during the historical time interval, and (d) ONI and recorded chol-
era cases during the recent time interval. Colour represents stength of coherence where 1 describes perfect periodicity and 0 describes no relationship. 
The pale shaded area and black outlines as in (3)

 

Fig. 3 Wavelet power spectrum depicting the strength of a particular wavelet scale across time for historical (a) and recent (b) epidemiological time 
signals. Color represents wavelet power level, where yellow regions indicate a strong contribution of a wavelet with a particular period at a particular date. 
The faded area denotes regions outside of the ‘cone of influence’ where the accuracy of the calculation is reduced by the presence of edge effects. Black 
outlines denote areas of statistical significance (p < 0.05) against the null hypothesis of white noise
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Fig. 5 Wavelet coherence between ONI and temperature during the historical interval (a) and recent interval (b), ONI and rainfall during the historical 
interval (c) and recent interval (d), ONI and SST during the historical interval (e) and recent interval (f), DMI and rainfall during the historical interval (i) and 
recent interval (j), DMI and SST during the historical interval (k) and recent interval (l). Colour represents stength of coherence where 1 describes perfect 
periodicity and 0 describes no relationship. The pale shaded area and black outlines as in (3)
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non-significant at all time lags considered and did not 
improve the SARIMA model. However, the same insig-
nificance was found between DMI/cholera in contrast to 
findings from the wavelet analysis.

Discussion
Our findings suggest that temperature may be an impor-
tant factor which mediates the relationship between 
of cholera and interannual phenomena. This theory is 
echoed by Pascual et al. [36] who also suggested that 
the influence of ENSO on cholera in Bangladesh is ulti-
mately mediated by increases in temperature. An associa-
tion between cholera and temperature has also recently 
been demonstrated in Kolkata using Generalized Addi-
tive Modelling [37]. This is a highly plausible relation-
ship as the causative relationship between temperature 
and endemic cholera is well-documented in the literature 
[38]. Laboratory microcosm studies have demonstrated 

Table 1 - Results of SARIMA analysis
Time 
Interval

Regressor Model Description AIC 
(%change 
from Null)

Historical Null ARIMA(1,0,0)(1,1,0) [11] 962.26
ONI (lag = 2) ARIMA(1,0,2)(0,0,1) [11] 834.79 

(-13.2%)
DMI (lag = 8) ARIMA(1,1,1)(0,0,1) [11] 959.79 

(-0.25%)
Recent Null ARIMA(1,0,0)(0,1,1) [11] 637.24

ONI (lag = 12*) ARIMA(1,0,0)(0,1,1) [11] 639.08 
(+ 0.29%)

DMI (lag = 4*) ARIMA(1,0,0)(0,1,1) [11] 637.93 
(+ 0.1%)

*Indicates not statistically significant at CCF. Null refers to the univariate 
cholera model. Model description describes the selected SARIMA model 
parameters in the form ARIMA (p,d,q) (P,D,Q) [m]. Where p refers to the order 
of the autoregressive terms, d the degree of differencing and q the order of 
the moving-average model. P,D, and Q describe the equivalent terms for the 
seasonal part of the model. m refers to the number of time steps in a single 
seasonal period

Fig. 6 Wavelet coherence between cholera and temperature during the historical interval (a) and recent interval (b), cholera and rain during the histori-
cal interval (c) and recent interval (d), cholera and SST during the historic interval (e) and recent interval (f)
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that the bacteria Vibrio Cholerae are better able to pro-
liferate in warmer waters [39, 40]. It is argued that this 
preference brings about an increased concentration 
of pathogenic Vibrio Cholerae bacteria in response to 
warmer temperatures [3].

An interesting comparison with our results can be 
found in analysis from Dhaka, an analogous city in Ban-
gladesh, also within the Bengal Delta, 250 km North-East 
of Kolkata. Research into the association between ENSO 
and cholera in Dhaka during the historical time interval 
has found very similar results to our analysis in Kolkata. 
A study which applied single spectrum analysis (SSA) to 
ENSO and cholera records in Dhaka from 1893 to 1920 
also found a weak association in the earlier half, reduc-
ing to uncorrelated in the latter half of the time series 
[5]. Interestingly, however, the results from both wavelet 
and SARIMA analysis indicate a much weakened associa-
tion with ENSO during the recent interval, which differs 
greatly from previous results in Bangladesh. The same 
study [5] found that the ENSO/cholera relationship was 
notably stronger and more consistent in a recent time 
interval (1980–2001) compared with the historical. These 
results are also in line with a further study in Dhaka [36] 
which found strong coherence between the time series 
from cholera and ENSO during the 18-year period from 
1980 to 1998. This discrepancy in the ENSO cholera rela-
tionship highlights the spatial heterogeneity of the chol-
era-ENSO relationship within the Bengal Delta [45].

The divergent relationship between the ENSO and 
cholera in Dhaka and Kolkata during the recent time 
interval may stem from the differing causes of flooding in 
these cities. Dhaka, like much of Bangladesh, is situated 
on a floodplain in the Ganges-Brahmaputra-Meghna 
(GBM) river basin and as such is frequently exposed to 
fluvial flooding [41]. It follows that flooding in Dhaka is 
highly influenced by overall rainfall in the entire GBM 
catchment region, a vast region encompassing Nepal, 
Bhutan, Bangladesh and North-East India [42]. Kol-
kata, while also subject to frequent annual flooding, is 
generally affected by pluvial flooding caused by a com-
bination of intense urbanisation and heavy localized 
monsoon rains [43]. Meteorological research has sug-
gested the rainfall-ENSO teleconnection is strongest in 
more northern (upstream) areas of the GBM basin [44]. 
This hypothesis would predict that flooding, and conse-
quently flooding induced cholera outbreaks, would hold 
a stronger association with ENSO in Dhaka compared 
with Kolkata.

The apparent reduced association between ENSO and 
cholera in Kolkata in the recent interval compared with 
the historic interval is largely expected and fits with our 
hypothesis of de-coupling due to improvements to water 
and sanitation. We also propose an alternative comple-
mentary explanation related to the changes in seasonal 

patterns. While in both time intervals cholera transmis-
sion was present during the summer, cholera incidence 
from March-May accounted for a much greater propor-
tion of overall burden historically (48%) compared with 
recently (20%). We believe this could influence the rela-
tionships with ENSO in two ways. First, in contracts to 
monsoon cholera, summer cholera across the Bengal 
Delta is generally associated with drought [37, 45], which 
in turn is highly influenced by streamflow and rain-
fall across the GBM basin [46]. Therefore, the increased 
teleconnection between rainfall with ENSO in upstream 
regions of the GBM basin compared with estuarine 
regions (such as Kolkata) could suggest that historical 
cholera would hold a greater relationship with ENSO 
than the more monsoon-centric recent cholera. Second, 
temperature has been shown to hold a much stronger 
association with summer cholera than monsoon chol-
era [36]. Hence, given the mediating role of temperature 
implied in our study, a decreased role of summer cholera 
could reduce the overall relationship with temperature, 
and consequently with ENSO.

Research into the association between cholera and IOD 
is less well developed, however previous research [47] 
has found that both positive and negative dipole events 
are associated with increased cholera incidence in Ban-
gladesh (1983–2008). In a separate study [47], wavelet 
coherency analysis found a strong association between 
cholera and IOD in Dhaka during the period 1988–1997, 
similar to our results in Kolkata during the recent inter-
val. However, the same study found no association in 
Matlab, a rural area near Dhaka. The findings of a strong 
IOD/cholera relationship in the dense urban centres of 
Kolkata and Dhaka, but not in rural Matlab, could suggest 
that, like ENSO, sensitivity to IOD is strongest is urban 
cores. An increased climate sensitivity in urban areas is 
further supported by a study from Reiner et al. [48], and 
more recently from Perez-Saez et al. [49] who found that 
the association between cholera and ENSO was much 
stronger in the central core of Dhaka compared with the 
more rural peripherals. The authors suggest this could 
be due to increased vulnerability to flooding as a result 
of poorer quality housing and greater population density.

The non-stationarity in the relationship between chol-
era and interannual variables may be explained by the 
highly complex relationship between ENSO/IOD and 
weather [12, 50, 51]. For example, a study in Bangladesh 
found no statistical relationship between ENSO and 
monsoon rainfall over the period 1948–2012 and found 
an association with average DMI values only in the West-
ern portion of Bangladesh [52]. This inconsistency is also 
further demonstrated by the fluctuating associations 
between interannual climate indicators and the weather 
variables: rainfall, temperature and SST in Fig. 6. To fur-
ther complicate matters, when IOD and ENSO events 
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occur simultaneously they can reduce each other’s influ-
ence [53]. This non-stationarity of climate-cholera rela-
tions well demonstrated by a study form Martinez et al. 
[54]. A mechanistic model of cholera transmission in 
Dhaka which incorporated ENSO dynamics predicted a 
large cholera outbreak in 2016 in response to the 2015–
2016 strong El Niño event. However, cholera cases that 
year were lower than average which the authors speculate 
was due to improvements to flood controls in the city and 
a potential decline in the bacterial environmental reser-
voir caused by a prolonged hiatus of large El Niño events.

With regards to the implications of our finding on the 
future of cholera in Kolkata, our results suggest a general 
de-coupling between environment and cholera trans-
mission, particularly with regards to the influence of the 
ENSO and tentatively with regards to IOD. This sug-
gests that, despite the convenience of early projections of 
interannual indices, within the context of Kolkata these 
are likely not helpful for developing cholera early warning 
systems. Further, our results do not suggest that the pro-
jected intensification of ENSO [55] and changes to IOD 
[56] resulting from climate change will significantly influ-
ence cholera burden in Kolkata. However, it is important 
to note that this analysis does not consider the effects on 
cholera of climate induced overall changes to air tem-
perature, sea level rise or other individual climate factors 
which may affect cholera vulnerability.

Conclusion
This study used wavelet analysis to uncover the dynamic 
relationship between cholera and interannual climate 
variables (ENSO and IOD) in Kolkata over historical and 
recent periods, which reflects the shifting epidemiologi-
cal patterns of the disease. The results, further validated 
through SARIMA analysis, reveal a significant shift in 
cholera patterns and its relationship with these climate 
variables across the two periods. During the historical 
period, cholera held a significant and non-stationary rela-
tionship with both ENSO and IOD, while in the recent 
period, the relationship appears to have diminished, espe-
cially with regards to ENSO, hinting towards a decou-
pling between interannual environmental influences and 
cholera transmission. Our results suggest spatial hetero-
geneity within the Bengal Delta by demonstrating a dif-
ferent cholera-climate relationship compared with Dhaka 
which has experienced an increased association with 
ENSO. We speculate that this may be caused by differing 
flood mechanisms between the two cities. Further, our 
analysis suggests that temperature may act as a key medi-
ating factor in these climate-disease relationships. Our 
results of a de-coupling between cholera and interannual 
variables indicate that climate-induced changes to ENSO 
and IOD may not significantly impact cholera burden in 
Kolkata.
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