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Abstract 

Background Pakistan is a multi-ethnic society where there is a disparity between dietary habits, genetic composi-
tion, and environmental exposures. The microbial ecology of healthy Pakistani gut in the context of anthropometric, 
sociodemographic, and dietary patterns holds interest by virtue of it being one of the most populous countries, 
and also being a Lower Middle Income Country (LMIC).

Methods 16S rRNA profiling of healthy gut microbiome of normo-weight healthy Pakistani individuals from differ-
ent regions of residence is performed with additional meta-data collected through filled questionnaires. The current 
health status is then linked to dietary patterns through χ2  test of independence and Generalized Linear Latent Vari-
able Model (GLLVM) where distribution of individual microbes is regressed against all recorded sources of variability. 
To identify the core microbiome signature, a dynamic approach is used that considers into account species occu-
pancy as well as consistency across assumed grouping of samples including organization by gender and province 
of residence. Fitting neutral modeling then revealed core microbiome that is selected by the environment.

Results A strong determinant of disparity is by province of residence. It is also established that the male microbiome 
is better adapted to the local niche than the female microbiome, and that there is microbial taxonomic and functional 
diversity in different ethnicities, dietary patterns and lifestyle habits. Some microbial genera, such as, Megamonas, Por-
phyromonas, Haemophilus, Klebsiella and Finegoldia showed significant associations with consumption of pickle, fresh 
fruits, rice, and cheese. Our analyses suggest current health status being associated with the diet, sleeping patterns, 
employment status, and the medical history.

Conclusions This study provides a snapshot of the healthy core Pakistani gut microbiome by focusing on the most 
populous provinces and ethnic groups residing in predominantly urban areas. The study serves a reference dataset 
for exploring variations in disease status and designing personalized dietary and lifestyle interventions to promote gut 
health, particularly in LMICs settings.
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Background
The gut microbiota harbors the largest microbial com-
munity assemblage in humans and is considered vital due 
to its role in homeostatic regulation of several physiologi-
cal processes, including metabolism, Short-chain fatty 
acid (SCFA) production, vitamin synthesis, digestion of 
certain dietary components and host immunity through 
prevention of pathogen colonization [1, 2]. Certain fac-
tors may induce temporary or permanent alterations in 
resident gut microbiota leading to gut dysbiosis. These 
include changes in diet, body mass index, exercise, anti-
biotic intake, stress and other psychological and envi-
ronmental factors [3]. Gut dysbiosis is associated with 
diseases such as inflammatory bowel disease (IBD), 
Clostridium difficile infection [4], rheumatoid arthritis 
[5] mental health issues (stress, anxiety and depression) 
[6], autoimmune and allergic disorders as well as certain 
metabolic diseases like diabetes and obesity [4]. Sim-
ple therapeutic interventions for the treatment of some 
of these diseases through gut microbiome modulation 
have shown efficacy in a few studies [7, 8]. However, the 
transnational application of many gut modulation inter-
ventions is limited by the sheer diversity of an individual’s 
gut microbiome, as microbial composition and diversity 
vary even amongst healthy individuals [9] and is influ-
enced by factors such as genetics, age, sex, and geograph-
ical location [3]. It is also known that the composition 
of gut microbiota remains relatively stable throughout 
the adult life [10]. Thus, ‘core’ healthy microbiomes may 
be relatively stable. Therefore, before gut modulation 
strategies can be widely adopted, we must first obtain 
a baseline understanding of the diversity of healthy 
gut microbiomes and define a core microbial commu-
nity. This may also aid in predicting treatment efficacy 
through gut microbiome modulation which underscores 
the importance of microbiome research among healthy 
populations from diverse ethnicities and geographies.

Projects such as The Human Microbiome Project 
(HMP) have identified multiple healthy ‘core’ microbi-
omes [11]. However, the majority of gut microbiome 
projects focus on Western (American and European) 
populations [12–14], and some of the most populous 
countries (Pakistan, India and Bangladesh) in the world 
remain underrepresented [15]. As geographic location, 
ethnicity and sociocultural habits also influence gut 
microbial composition [16], the current global under-
standing of healthy microbial communities may not be 
applicable to much of the world’s population.

Pakistan is the fifth most populous country in the world 
with > 240 million population and multi-ethnic region, 
culturally diverse, with cultural and dietary influences 
from neighboring countries like Afghanistan and Iran 
predominating in the north and south western regions of 

the country and Indian influences in the eastern regions. 
Moreover, Pakistan shares genetic characteristics with 
the Indian population due to historic large-scale popu-
lation immigration from India to Pakistan during the 
Indian sub-continent partition in 1947 [17]. Pakistan 
is one of the underrepresented countries for microbi-
ome research in South Asia [18]. Few pilot studies have 
attempted to publish Pakistani gut microbiome, primar-
ily focusing on the microbial signature in diseases and 
that too in a specific region missing in-depth analysis of 
healthy gut microbiome along with exposome [19–21]. 
Therefore, a comprehensive study discussing geography, 
ethnicity, dietary patterns and other lifestyle specific 
variations in microbiome composition and diversity of 
healthy adult Pakistani population is required.

To bridge this knowledge gap, fecal samples from 
healthy adult volunteers, aged between 18 and 40 years, 
belonging to different ethnicities, representing six 
major geographical regions in Pakistan were charac-
terized based on high-throughput sequencing of 16S 
rRNA genes. We have applied traditional diversity met-
rics within the PERMANOVA framework to see if the 
changes in composition, phylogeny, and function of the 
microbial communities can be explained by the sources of 
variation. Using species abundance-occupancy diagrams 
and coupling them with neutral modelling, we have 
identified the core microbiome dynamically, considering 
province- and gender- specific occupancy of observed 
species. With neutral modelling, we are then able to iden-
tify which species are deterministically selected. Using 
χ
2 test of independence and Generalised Linear Latent 

Variable Model (GLLVM), we have explored not only the 
dependencies between the observed categorical variables 
comprising diet, lifestyle and psychosocial factors, but 
have also linked them to the individual microbes. Some 
of the diversity analyses are then repeated for meta-
bolic functions predicted for the microbial communities 
observed for each sample. These analyses then provide 
useful insights on the ethnic, ecological, psychosocial, 
and dietary drivers of gut microbiome composition and 
diversity in a healthy Pakistani populace.

Results
Pakistani core fecal microbiome shows distinctive phyla 
occupancy based on region and sex
First, core microbiome of Pakistani adults was estab-
lished by considering different occupancy models, i.e., 
how we rank the amplicon sequencing variants (ASVs) 
to be part of the core microbiome. To do so, we consider 
gender and province of residence specific occupancies 
and within these groups replicate consistencies to suggest 
the ranking of ASVs (Fig.  1). By utilizing this ranking, 
we iteratively construct a core microbiome set stopping 
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when there is diminishing return on explanatory power 
of beta diversity (Bray–Curtis contribution), i.e., doesn’t 
increase more than 2%. This dynamic approach is pre-
ferred over traditional approach where core microbiome 
is often based on a crisp threshold of 95% prevalence 
[22].

We observed gender-based differences in the propor-
tion of ASVs occupying the core microbiome. Without 
taking any site-specific occupancy (whether province of 
residence or gender), the minimum occupancy for ASVs 
being part of the core microbiome was ~ 33% for males 
(Fig. 1A) and ~ 52% for females (Fig. 1B), and ~ 59% when 

Fig. 1 Core microbiome identified through species occupancy abundance diagrams. A stringent occupancy criteria A, B, C is incorporated 
where we clump all the samples in a single site (no site specific occupancy), and then calculate the ranking of ASVs based on their occupancy 
and replicate consistency within a single category. Alternatively, we calculate the occupancy and replicate consistency of these ASVs separately 
(site specific occupancy) for each site where for D, site represents province of residence for males; for E, site represents province of residence 
for female; and for F, site represents the gender. Once we have obtained the rankings depending on which criteria used, Bray–Curtis similarity 
is calculated for the whole dataset, and then also for only the top-ranked taxa. The contribution of the top-ranked taxa is divided by the total 
Bray–Curtis similarity to calculate a percent contribution of the prospective core set to beta diversity. The next-ranked taxon is added consecutively 
to find the point in the ranking at which adding one more taxon offers diminishing returns on explanatory value for beta diversity (G, H, I). The 
red line represents the stringent “Elbow approach” where the change is maximal between the left and right side of dotted red threshold in terms 
of first-order differences, and “Last 2% decrease” criteria where ASVs are incorporated in the core subset until there is no more than 2% decrease 
in beta diversity. In this study, we are only identifying core microbiome (red, green and blue points) using “Last 2% decrease” criteria. Independently, 
a neutral model is fitted with those ASVs that fall within the 95% confidence interval (shown in green), and those that fall outside the 95% model 
confidence to be inferred as deterministically assembled, i.e., non-neutral ASVs. Points above the model are selected by the (host) environment 
(shown in red), and points below the model are dispersal limited (shown in blue). The proportion of core ASVs belonging to different phyla are then 
shown with a pie chart whilst the count of neutral/non-neutral ASVs are shown with the bar plots
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these are collated as a single Pakistani group (Fig.  1C). 
When we calculated occupancy separately for province 
of residency, the minimum occupancy threshold for 
males dropped down significantly to ~ 2% (Fig. 1D) sug-
gesting that there is a local male microbial niche, where 
some ASVs are seen only in certain provinces, as shown 
in Additional file  1: Fig S1. The same was not observed 
for females (Fig.  1E), where the drop was not very sig-
nificant (~ 10%). These results suggest male microbiome 
to be more well adapted to local niche than the female 
microbiome. When coupling with neutral modeling 
where the core microbiome was further discretized into 
three groups [Red (Above), selected by the host environ-
ment; Green, neutral; and Blue (Below), driven by disper-
sal limitation], for males, and no site-specific occupancy, 
the core microbiome belonged to five major phyla Act-
inobacteriota, Bacteroidota, Desulfobacterota, Firmicutes 
and Proteobacteria (Fig.  1G). Points above the neutral 
prediction were dominated by Firmicutes and Bacteroi-
dota. Using province of residence specific occupancies, 
additional core phyla such as Campylobacteriota, Cyano-
bacteria, Elusimicrobiota and Patescibacteria appeared 
(Fig. 1G). In females with no site-specific occupancy, core 
phyla were similar to that of males, i.e., composed of Act-
inobacteriota, Bacteroidota, Firmicutes and Proteobacte-
ria with absence of Desulfobacterota. Sex-based variation 
was observed between males and females with increased 
Firmicutes abundance in females and lower Bacteroidota 
abundance, as compared to males (Fig. 1H). Meanwhile, 
Desulfobacterota appeared as part of core phyla when 
province of residence-specific occupancy was used for 
females. This was mainly dominated by Desulfovibrio 
(ASV_160), which appeared mostly in residents of Islam-
abad Capital Territory (ICT), whether males or females 
(Additional file  1: Figs. S1 and S2). Interestingly, when 
we put all the male and female samples together, the core 
microbiome remained similar irrespective of whether 
a gender-specific occupancy model was used or not. In 
these cases, the core Pakistani phyla were dominated by 
Firmicutes, followed by Bacteroidota, Actinobacteriota, 
and Proteobacteria (Fig. 1I).

Microbial taxonomic and functional diversity observed 
in different ethnicities, dietary patterns and lifestyle habits
In terms of composition, particularly alpha diversity esti-
mates using richness and Shannon entropy, statistically 
significant differences were observed with various geo-
graphical, ethnic, sociodemographic and dietary covari-
ates. Lower microbial richness and Shannon diversity 
was observed in participants reporting province of birth 
and residence as Baluchistan and Khyber Pakhtunkhwa 
(KPK) compared to Sindh, Punjab, ICT and Azad Jammu 
& Kashmir (AJK) (Additional file  1: Fig. S5). In ethnic 

groups, Saraiki (n = 4) showed higher diversity as com-
pared to other ethnicities [Punjabi (n = 37), Urdu speak-
ing (n = 6), Kashmiri (n = 9), Pathan (n = 22), Sindhi 
(n = 6) and Balochi (n = 7)] (Additional file  1: Fig. S5). 
With regards to diet, participants eating pickle and soft 
cheese regularly showed significantly lower microbial 
diversity (Additional file 1: Fig. S4). Interestingly, certain 
sociodemographic and lifestyle variables also depicted 
shift in alpha diversity. People who were self-employed 
had decreased microbial diversity as compared to stu-
dents and full-time employees (Additional file 1: Fig. S5). 
A gradual decrease in diversity was also observed with 
different levels of tiredness reported by the participants 
(Additional file 1: Fig. S7).

In terms of functional diversities, analyzed using recov-
ered KEGG orthologs and MetaCyc pathways abun-
dances, participants reporting province of residence 
as KPK showed higher functional diversity for rich-
ness and Shannon entropy (Additional file  1: Fig. S10). 
In participants with province of birth and residence as 
Punjab and KPK, higher MetaCyc pathways diversity 
was observed respectively (Additional file  1: Fig. S14). 
A gradual increase in functional diversity was observed 
from low to high socioeconomic status (Additional file 1: 
Fig. S10). On the other hand, a gradual decrease in KEGG 
orthologs and MetaCyc pathways diversity was observed 
with different levels of tiredness (Additional file  1: Figs. 
S11 and S14). Participants reporting regular throat issues 
also exhibited a decrease in MetaCyc pathway diversity 
(Additional file 1: Fig. S16).

In terms of beta diversity, marked variation was 
observed in gender (Additional file  1: Fig. S17) ethnic-
ity, province of birth and residence (Additional file 1: Fig. 
S20), feelings of wellbeing, tiredness (Additional file  1: 
Fig. S17), parasitic infection treatment (Additional file 1: 
Fig. S19), antibiotic intake in childhood, trouble falling 
asleep and regular throat issues (Additional file  1: Fig. 
S21). Variation was also observed in some dietary items 
consumption such as fresh fruits, bread, soft cheese, 
pickle and honey (Additional file 1: Figs. S18 and S19).

Current health status of Pakistani adults is associated 
with diet, employment status, sleeping pattern 
and medical history
We first analyzed various dependencies between charac-
teristics of study participants, collected through a self-
recorded questionnaire provided at the time of sample 
collection. This was done using χ2 test of independence 
and then the relationships were explored further using 
Pearson residual to identify what are the attractors and 
repellents within the observed categories of two variables 
where the  χ2 test came out to be significant. The pri-
marily variable was self-reported current health status, 
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against which the relationships were sought. The results 
are shown in Additional file  1: Figs. S22–S47, and then 
summarised in Tables 1, 2, and 3 in terms of most signifi-
cant attractors. Our results showed that poor health sta-
tus was positively associated with acid reflux and anaemia 
(Additional file 1: Fig. S22), bad breath (Additional file 1: 
Fig. S23), gut flare-ups (Additional file 1: Fig. S32), lactose 
sensitivity, lethargy (Additional file  1: Fig. S33), anxiety 
(Additional file 1: Fig. S39), stress (Additional file 1: Fig. 
S40), throat infections (Additional file  1: Fig. S41), dis-
turbed sleeping patterns (Additional file 1: Figs. S42, S44 
and S45), and part-time employment status (Additional 
file 1: Fig. S30). Amongst dietary variables, natural spring 
water as a drinking water source (Additional file  1: Fig. 
S28), consumption of beef (Additional file  1: Fig. S24), 
coffee (Additional file 1: Fig. S26), dry fruits (Additional 
file  1: Fig. S29), honey (Additional file  1: Fig. S34), and 
oatmeal correlated with poor health status (Additional 
file 1: Fig. S36). Good and moderate health status is posi-
tively associated with mutton consumption (Additional 
file 1: Fig. S35) and taking medication to treat constipa-
tion (Additional file 1: Fig. S27) respectively. Meanwhile, 
excellent current health status was positively associated 
with parasitic infection during childhood (Additional 
file  1: Fig. S25) or its treatment (Additional file  1: Fig. 
S36), male sex (Additional file 1: Fig. S29), defecation fre-
quency of twice a day (Additional file 1: Fig. S31), regular 
exercise (Additional file 1: Fig. S41), and vaccination with 
hepatitis and polio vaccines (Additional file  1: Figs. S43 
and S46).

Sociodemographic, anthropometric and dietary factors 
are the key drivers of variation in microbial composition 
and functions
We next performed PERMANOVA analysis to assess 
variability in microbiome using different beta diver-
sity indices (i.e., Bray–Curtis, Unweighted UniFrac, 
weighted UniFrac and Hierarchical Meta-Storms) to 
ascertain how microbiota, phylogeny, and function 
changes with dietary habits and lifestyle (Additional 
file  1: Table  S1). Using  R2 in PERMANOVA, if signifi-
cant (p < 0.05), represents the variability explained by 
that variable. The variables which showed strong asso-
ciation for at least three of the beta diversity distance 
measures have been highlighted in Additional file  1: 
Table S1. For example, we found that respondents who 
were given antibiotics during their childhood have 
shown significant variability in terms of microbial com-
position (3.3% variability) and phylogeny (7.4% vari-
ability). Other significant factors which accounted for 
variability in microbial composition, phylogeny and 
function include how people generally felt about their 

health (1.6% variability in composition) and whether 
they were recently tired (5.3% variability in phylogeny). 
The BMI and gender accounted for 1.7% variability in 
composition, and 1.7% variability in function, respec-
tively. Similarly, consumption of honey (1.6% vari-
ability in composition; 3.4% variability in phylogeny), 
pickle (2.8% variability in composition; 3.3% variability 
in phylogeny), rice (2.5% variability in phylogeny; 2% 
variability in function) and soft cheese (2.8% variability 
in composition; 3.3% variability in phylogeny) were all 
implicated as significant covariates.

Key genera implicated with sources of variability
We then analyzed the top 100 most abundant microbial 
taxa against all sources of variation by fitting a general-
ized linear latent variable model (GLLVM) to find the 
covariates that on average caused a substantial change 
in the abundance of the microbial taxa. These covari-
ates included gender, age, BMI, province of birth and 
residence, education, source of drinking water, socio-
economic status, different food items consumption 
and dietary habits with results shown in Figs. 2, 3, and, 
4, respectively, and summarized in Additional file  1: 
Table  S2 in terms of top 5 most significantly positive 
and negatively associated genera for a given covariate 
(51 genera in total). We then only considered genera 
associated with the covariates that showed significant 
changes in alpha or beta diversity (22 genera in total). 
These covariates are highlighted in Additional file  1: 
Table  S2 with a grey background. Some of the genera 
which were positively or negatively associated with 
gender, provinces of birth and residence in comparison 
to ICT were SCFA producers such as Lachnospiraceae; 
CAG-56, Phascolarctobacterium, Turicibacter, Lach-
nospiraceae_UCG-004, [Eubacterium]_ruminantium_
group, Peptoniphilus, [Eubacterium]_siraeum_group, 
[Eubacterium]_xylanophilum_group, Mitsuokella 
and Paraprevotella. These genera were also positively 
associated with fresh fruits, soft cheese and honey 
consumption and negatively associated with pickle con-
sumption. Other genera which were negatively associ-
ated with Punjab, Balochistan and KPK in comparison 
to ICT were mostly non-SCFA producer microbes such 
as Solobacterium, Haemophilus, Klebsiella, Elusimicro-
bium and Corynebacterium. Haemophilus, Klebsiella 
and Succinivibrio were positively associated with soft 
cheese consumption and negatively associated with 
pickle and fresh fruits consumption. Finegoldia, Aster-
oleplasma, Erysipelotrichaceae_UCG-003, Elusimicro-
bium, Megamonas and Porphyromonas were positively 
associated with pickle, rice and fresh fruits consump-
tion (Additional file 1: Table S2).
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Table 1 Strongest positive attractors of current health status in respondents categorized under clinical history

No
YesVaccinated with Polio 

vaccine No
YesVaccinated with Rabies 

vaccine No
YesVaccinated with 

Hepatitis vaccine No
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Discussion
Our study provides an extensive examination of the core 
microbiome of Pakistani population with consideration 
to the exposome driving the gut microbiomes. Using a 
dynamic approach based on occupancy models for iden-
tifying the core microbiome, our results demonstrated 
that the gut microbiome of males was more diverse than 
the gut microbiome of females. Moreover, we observed 

that the male and female core microbiomes were influ-
enced by place of residence. It has been observed that a 
larger number of males migrate from their place of birth 
to urban areas to find better opportunities for education 
and earning as compared to females [23]. Apart from four 
major phyla such as Firmicutes, Bacteroidota, Actinobac-
teriota and Proteobacteria, we observed Desulfobacterota 
to be part of core microbiome of male and females when 

The results are based on χ2 test of independence using Pearson residuals summarizing results shown in Additional file 1: Figs. S22–S47. The highlighted cells show the 
strongest relationship recovered between the factors of two variables

Table 1 (continued)

Table 2 Strongest positive attractors of current health status in respondents categorized under psychological and behavioural 
patterns

Variables Current health status
Poor Moderate Good Excellent

YesDo you think you are 
becoming healthier? No

Extremely
Moderately

Slightly

Felt healthy in past 1 
week

Not at all
Extremely
Moderately
Slightly

Felt anxious in past 1 
week

Not at all

Extremely

Moderately
Slightly

Felt stressed in past 1 
week

Not at all
Between 4 to 6 
hours
Between 6 to 8 
hours
Less than 4 
hours

Sleep time

More than 8 
hours
No never

Yes always

Yes sometimes

Trouble falling asleep

Yes usually
No never
Yes always
Yes sometimes

Trouble getting back to 
sleep once awake

Yes usually
YesExercise regularly
No

. .

.

.

.

.

.

.
The results are based on χ2 test of independence using Pearson residuals summarizing results shown in Additional file 1: Figs. S22–S47. The highlighted cells show the 
strongest relationship recovered between the factors of two variables
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grouped on the basis of province of residence. People liv-
ing in ICT (Islamabad Capital Territory) showed higher 
abundance of Desulfobacterota in comparison to other 
provinces of residence. Desulfobacterota are sulfate-
reducing bacteria, associated with gut inflammation and 
increased immune response [24]. Moreover, lower abun-
dance of Firmicutes and higher abundance of Bacterio-
dota was observed in males as compared to females. High 
or low Firmicutes to Bacteriodetes ratio is associated with 
obesity and inflammatory bowel disease respectively [25]. 
Therefore, it is not surprising that greater incidence of 
IBD and obesity is observed amongst females [26, 27]. 
It must be noted that higher Firmicutes to Bacteroidetes 
ratio is also consistently reported amongst female indi-
viduals in various studies [28, 29] and therefore present a 
normal physiological response and any association to dis-
ease must be determined in context of other risk factors.

We also observed Campilobacterota, Cyanobacteria, 
Elusimicrobiota, and Patescibacteria as core phyla in 
Pakistani males with respect to Province of residence. 
Campilobacterota are associated with development of 

gastrointestinal diseases such as inflammatory bowel 
disease (IBD) and Ulcerative colitis [30]. Cyanobacte-
ria, and, Elusimicrobiota, are also found in groundwater, 
as well as animal gut and soil, and the latter are associ-
ated with nitrogen metabolism [31, 32]. Patescibacteria 
were also detected as part of core microbiome in males 
with site specific occupancy, which have small genome 
size are parasitic in nature and found in groundwater in 
rural regions [33], therefore their prevalence may indi-
cate exposure to rural environments. Campilobacterota, 
Elusimicrobiota, and Patescibacteria have been previ-
ously reported as phyla prevalent in healthy individuals 
from west Bengal [34].

Next our focus was to determine how taxonomic and 
functional diversity of gut microbiome changes in dif-
ferent geographical location (province of birth and resi-
dence), ethnicities, dietary patterns and lifestyle habits. 
We used alpha and beta diversity measures and PER-
MANOVA to observe the variations in microbiome. 
Pakistan is a multi-ethnic society, with disparate die-
tary rituals and lifestyle. For alpha diversity, our results 

Table 3 Strongest positive attractors of current health status in respondents categorized under socioeconomic and dietary factors

Variables Current health status
Poor Moderate Good Excellent

YesChildren
No
YesHousehold pets
No
Bottled
Filtered
Mineral
Natural spring

Source of drinking water

Tap
Full time
Part time
Self employed
Student

Employment status

Unemployed

YesDry fruits consumption
No

YesHoney consumption
No
YesOatmeal consumption
No
YesBeef consumption
No
YesMutton consumption
No
YesCoffee consumption
No

.
.

.

.

.

.

.

.

.
.

The results are based on χ2 test of independence using Pearson residuals summarizing results shown in Additional file 1: Figs. S22–S47. The highlighted cells show the 
strongest relationship recovered between the factors of two variables
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indicate that both birth province and the province of 
residence as well as different ethnicities explain changes 
in microbial and functional diversity. Balochistan (prov-
ince of birth) and KPK (province of residence) showed 
lower microbial diversity and higher KEGG orthologs 
and MetaCyc pathway diversity as compared to other 
provinces demonstrating differences in dietary patterns 
and cultural habits. People living in Balochistan and KPK 
consume more meat based diet which is in line with pre-
vious observations that meat consumption reduces the 
richness and microbial diversity [35]. Balochi and Pathan 
ethnicities showed lower diversity as compared to Saraiki 
which mostly reside within Punjab province and have 
variety of food consumption based on meat, vegetables 
and fruits.

Intake of vegetables and fruits is already reported to 
be associated with increased microbial diversity [36]. In 
contrast to previously reported studies [37, 38], pickle 
and soft cheese consumption were observed to be asso-
ciated with lower alpha diversity and significant varia-
tion in beta diversity in this study. Pickle is considered 
as a potential source of probiotics and has been reported 
to reduce the risk of long term diabetes [38, 39]. How-
ever, the pickle production process in Pakistan and India 
is very different from other countries. For instance, the 
pickled food items are usually fermented in spices before 
preserving them in oil, whereas common pickling pro-
cesses in other regions rely on preserving blanched veg-
etables in vinegar [40]. Similarly, Cheese consumption 
also reduces the risk of metabolic syndrome and plasma 

Fig. 2 β coefficients returned from GLLVM procedure for covariates considered in this study by considering top 100 most abundant genera 
incorporating both continuous as well as categorical labelling of samples. Those coefficients which are positively associated with the microbial 
abundance of a particular species are represented in red colour whilst those that are negatively associated are represented with blue colour, 
respectively. Where the coefficients are non-significant, i.e., the 95% confidence interval crosses the 0 boundary, they are greyed out. Since 
the collation of ASVs was performed at Genus level, all those ASVs that cannot be categorized based on taxonomy are collated under “__
Unknowns__” category. The acronyms are as follows: (ICT Islamabad Capital Territory, AJK Azad Jammu & Kashmir, KPK Khyber Pakhtunkhwa, 
LC Lower Class, LMC Lower Middle Class, MC Middle Class, UMC Upper Middle Class). Note that the GLLVM procedure additionally calculates 
the residual covariance matrix of the latent variables in the model which gives an additional co-occurrence relationship between microbes, 
and is given in Additional file 1: Fig. S47
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cholesterol level but no evidence of cheese consump-
tion effects on microbial alpha and beta diversity was 
observed previously [37].

Self-employment and low socioeconomic status were 
also found to be associated with low microbial and 
KEGG orthologs diversity and poor health status. Low 
socioeconomic status has also previously shown to be 
associated with reduced alpha diversity [41]. It is inter-
esting to note that lower microbial, KEGG orthologs and 
MetaCyc pathways diversity was observed in respond-
ents reporting extreme tiredness and poor health status. 
Chronic fatigue has been previously reported to reduce 
the microbial and functional diversity [42].

In terms of beta diversity, gender, parasitic infection 
treatment, antibiotic intake in childhood, trouble falling 
asleep, regular throat issues, bread and fresh fruits con-
sumption were amongst the major factors observed to 
be causing changes. It is well known that gender plays 
an important role in shaping gut microbial structure 
[43]. Studies have reported differences in gut microbial 

diversity and composition of males and females [44, 45] 
that could be explained by differences in hormones which 
impact innate immune responses [43]. Parasitic infec-
tion is also known to be associated with alteration in gut 
microbial diversity that could be due to parasite-induced 
Th2 immune response which triggers the disturbance in 
gut microbiota composition and diversity [46]. Antibiotic 
intake in childhood is reported to induce the changes in 
gut microbial composition and diversity which persists 
even after years [47]. Poor sleeping habits which were 
observed to be associated with poor health status also 
reduce the microbial diversity and are reported to modify 
the gut microbial composition which in turn can pro-
mote insulin resistance and systemic inflammation [48]. 
Regular throat issues which were observed to be associ-
ated with change in beta diversity are in line with what is 
previously reported. Studies have shown that respiratory 
tract infections can reduce the microbial diversity, espe-
cially members of Ruminococcaceae and Lachnospiraceae 
family which were reduced in respondents reporting 

Fig. 3 β coefficients for covariates categorized under dietary items
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Fig. 4 β coefficients for covariates categorized under intake frequency of selected dietary items
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regular throat infections. These are SCFA producers and 
are known to play important role in gut barrier func-
tions [49]. Fruits are an important part of healthy diet 
and known to increase the microbial composition and 
diversity. They maintain intestinal mucosal integrity and 
improve anti-inflammatory properties and insulin sensi-
tivity through short-chain fatty acids (SCFA) production 
[50].

We then focused our attention on finding the associa-
tion between the self-reported health status of Pakistani 
adults with some of the abovementioned variables asso-
ciated with significant changes in gut microbial diver-
sity. Host dietary and lifestyle patterns can substantially 
impact the gut microbiome, which in turn can influence 
status of wellbeing. We found that poor health status was 
mainly associated with medical history of acid reflux, 
anemia, gut flare-ups, bad breath, stress, anxiety and lac-
tose sensitivity. Acid reflux is associated with poor health 
status and previously reported to reduce the microbial 
diversity [51]. Stress, anxiety and acid reflux are reported 
to be interlinked, as stress and anxiety are often among 
the factors associated with acid reflux [52]. Halitosis 
(bad breath) causing bacteria Solobacterium is observed 
to be present abundantly in our study and is associated 
with poor health. Bad breath can be due to poor oral 
hygiene, certain foods, smoking and medical conditions 
[53]. Drinking unsafe and contaminated water can also 
compromise the health status. Drinking water source 
was associated with poor health status and is already 
known to enrich certain antimicrobial resistance genes in 
gut microbial communities of Pakistanis [54]. Dry fruits 
also showed association with poor health which could 
be explained by the fruits drying procedure. Studies have 
reported that fruits dried in open air or unhygienic con-
ditions may be contaminated with microorganisms which 
can cause life threatening health issues [55]. Honey con-
sumption is considered as a natural source of vitamins 
and polyphenolic compounds that provide health benefi-
cial effects. However, it is reported that honey collected 
from toxic plants can cause hazardous effects to health 
[56]. Defecation frequency twice a day and regular exer-
cise were shown to be associated with excellent health 
status are in line with the previous studies [51, 57].

Finally, we used GLLVM to find the association of 
microbial taxa with key variables analysed in this study. 
Amongst the top highly abundant genera, microbial taxa 
with SCFA producing properties had positive/negative 
association with gender, province of birth and residence 
and some food items (soft cheese, fresh fruits, honey, rice 
and pickle) consumption. For example, Lachnospiraceae; 
CAG-56 had a strong positive association with KPK 
(province of birth) compared to ICT, soft cheese and 
fresh fruits consumption, and negatively associated with 

gender (male), AJK and Sindh (province of birth), Punjab 
and Balochistan (province of residence) as well as honey 
consumption. Lachnospiraceae_UCG-004 and [Eubacte-
rium]_xylanophilum_group had positive association with 
gender and AJK, Punjab and balochistan (province of 
residence) and negative association with all provinces of 
birth and honey consumption. Whereas [Eubacterium]_
ruminantium_group were negatively associated with 
pickle consumption. All these genera belong to family 
Lachnospiraceae, members of which are SCFA produc-
ers and known to inhibit intestinal inflammation, main-
tain the intestinal barrier, and modulate the gut motility 
[58]. Lachnospiraceae;CAG  are associated with high fibre 
diet and complex carbohydrates [59]. Amongst Lachno-
spiraceae, [Eubacterium]_xylanophilum_group has been 
involved in lipid and glucose metabolism [60]. Phscolarc-
tobacterium also showed positive association with gender 
and honey consumption and negative association with 
rice and fresh fruits consumption. These are also SCFA 
producers and studies have reported their higher abun-
dance between age group of 18–40  years. They are also 
observed to be associated with high fat diet, starchy food 
and grain consumption [61, 62]. Other SCFA produc-
ers include Peptoniphilus, Mitsuokella, Megamonas and 
Paraprevotella. Peptoniphilus is an opportunistic patho-
gen which can cause bloodstream, diabetic skin and soft 
tissue infections [63]. Whereas Megamonas, Mitsuokella 
and Paraprevotella are previously reported as part of 
healthy gut microbiome in Indian population [64, 65]. 
Other non SCFA producers which showed association 
with the co-variates included Solobacterium, Haemophi-
lus, Klebsiella, Elusimicrobium, Corynebacterium. Fine-
goldia, and Erysipelotrichaceae_UCG-003. Solobacterium 
which causes halitosis (foul smell or oral malodour) and 
oral infections were most abundantly present in people 
belonging to Balochistan, KPK and Sindh provinces [66]. 
Haemophilus, Finegoldia, and Corynebacterium were 
decreased with fresh fruits consumption. Haemophilus 
are the part of salivary microbiome and some of the spe-
cies can cause respiratory infections [67, 68]. Finegoldia 
are previously associated with high BMI and sweets 
consumption [69]. Corynebacterium are gram-positive 
bacilli, including many toxigenic species which cause res-
piratory tract infections such as diphtheria [70]. A recent 
study has reported that fresh fruit consumption, espe-
cially mangoes can increase the abundance of Corynebac-
terium pyruviciproducens which is considered as immune 
modulator [71]. Erysipelotrichaceae_UCG-003 increased 
with pickle, rice and fresh fruits consumption and is 
previously observed to be enriched with high fiber diet 
intake [72].
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Conclusions
This study provides an early snapshot of the healthy core 
Pakistani gut microbiome by focusing on the most popu-
lous provinces and ethnic groups residing in predomi-
nantly urban areas. Our interpretations are based on 
studying the gut microbial profiles of limited sample size 
of 117 healthy individuals relying on partial sequencing 
of the 16S rRNA gene. We believe that profiling of less 
populous ethnic groups and provinces within the country 
with greater representation from rural areas may provide 
additional insights into the diversity of healthy Pakistani 
gut microbiome. We compensate the limitations by using 
state-of-the-art analytical tools to provide an in-depth 
exploration of microbial communities in association 
with current health status, impact of sociodemographic 
factors and dietary patterns on microbial communities 
within the healthy gut, suggesting gut microbiome het-
erogeneity. The study may serve as a reference for explor-
ing variations with disease status and may play a role in 
designing personalized dietary and lifestyle interventions 
to promote gut health. Moreover, knowledge about key 
microbial species in the healthy gut aids in the develop-
ment of therapeutic strategies to modulate microbiome, 
such as prebiotics, probiotics, fecal microbiota transplant 
(FMT), and phage therapies.

Materials and methods
Study participants identification and recruitment
117 participants (61 females and 56 males) were initially 
identified and recruited for the study. All the participants 
were screened through a questionnaire based on inclu-
sion/exclusion criteria as follows. Participants were aged 
between 18 and 40 (mean age 28.7 ± 5.45) and belonged 
to six major geographic regions [Punjab (n = 40), Sindh 
(n = 6), Balochistan (n = 10), KPK (Khyber Pakhtunkhwa) 
(n = 15), ICT (Islamabad Capital Territory) (n = 14) and 
AJK (Azad Jammu & Kashmir) (n = 8)] and major eth-
nic typification [Punjabi (n = 37), Pathan (n = 22), Kash-
miri (n = 9), Balochi (n = 7), Saraiki (n = 4), Sindhi (n = 6) 
and Urdu speaking (n = 6)]. The major exclusion criteria 
were age < 18 or > 40, body mass index (BMI) either < 18 
or > 30 kg/m2, antibiotic or multivitamin intake within the 
last three months, any prior clinical history of chronic or 
acute infections or other diseases, pregnant or lactating 
females, or females with irregular menstrual cycles (i.e., 
less than 21 or more than 35 days apart). All the partici-
pants were asked to mention their province of birth and 
residence because at the time of sampling, some partici-
pants were residing at their place of birth whereas others 
have relocated to other cities/Provinces. Majority of par-
ticipants were from urban areas comprising of students 

or young professionals who migrated from their place of 
birth and living in ICT for last 2–3 years.

Sample collection
All the participants were briefed on the stool sampling 
methodology and were given uBiome Explorer kits. 
These kits follow the protocols outlined by the NIH 
Human Microbiome Project [[73] Available online at: 
http:// www. fda. gov/ cder/ guida nce/ 959fnl. pdf (accessed 
22 August 2023)]. These were then shipped to Microbi-
ota Centre of Amsterdam (MiCA) in the Netherlands for 
subsequent downstream processing.

DNA extraction and PCR amplification
DNA extraction and PCR amplification were per-
formed in the Microbiota Centre of Amsterdam (MiCA), 
Amsterdam. First, sample collection tubes were centri-
fuged at 14,000 RPM/18,626 RCF (fixed angle) for 10 min 
at room temperature and stabilizing buffer was removed. 
Next, DNA from fecal samples was extracted using a 
repeated bead beating protocol and purified using the 
Maxwell RSC Whole Blood DNA kit [74]. Purified DNA 
concentration was measured by using the Qubit®dsDNA 
BR Assay with 96 well plate (Invitrogen—Carlsbad, Cali-
fornia, United States). Four sample collection kits con-
taining only solubilizing buffer with no stool samples 
were used as negative control and were followed for 
the same extraction steps. V3-V4 amplicon sequencing 
was selected based on its established utility as the most 
appropriate choice, with low error propagation in Illu-
mina sequencers as described previously [75–77]. The 
V3–V4 region of the 16S ribosomal RNA (rRNA) gene 
was amplified using a single step PCR protocol using 
universal primers, B341 F and B806R. Ampure XP beads 
were then used to purify the amplicon libraries and puri-
fied products were pooled equimolarly [78]. The library 
was sequenced with an Illumina MiSeq platform using v3 
chemistry with 2 × 250 cycles.

Bioinformatics
Abundance tables were generated by constructing Ampli-
con Sequencing Variants (ASVs) using the QIIME2 work-
flow [79] and the DADA2 denoising algorithm [80], in 
which both forward and reverse reads are denoised and 
merged together (using qiime dada2 denoise-paired com-
mand). Additionally, MAFFT [81] and FastTree [82] were 
used using qiime phylogeny align-to-tree-mafft-fasttree 
command to generate the rooted phylogenetic tree. Full 
details of the commands are provided at https:// github. 
com/ umeri jaz/ tutor ials/ blob/ master/ qiime2_ tutor ial. md 
and are similar to methods (bioinformatics) previously 
published by the authors [83]. The samples for this study 

http://www.fda.gov/cder/guidance/959fnl.pdf
https://github.com/umerijaz/tutorials/blob/master/qiime2_tutorial.md
https://github.com/umerijaz/tutorials/blob/master/qiime2_tutorial.md
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form a subset of a larger gut associated study with all the 
samples pooled together to generate a single abundance 
table (n = 176 samples x P = 4751 ASVs). These samples 
included 4 negative controls, which were later used to 
identify and remove contaminants (11 ASVs) by employ-
ing the Prevalence Method in R’s decontam package [84]. 
Additionally, PICRUSt2 algorithm [85] as a QIIME2 
plugin (using qiime picrust2 full-pipeline command) was 
used on the ASVs to predict the functional abundance of 
microbial communities (both KEGG enzymes and Meta-
Cyc pathways were recovered) by using the weighted 
Nearest Sequenced Taxon Index (NSTI) threshold of 2.0 
in the software to map the ASVs against the reference 
database comprising ~ 20,000 genomes (whose functions 
were known) in PICRUSt2. Only 4 ASVs out of 4,751 
did not match, and thus a very high alignment (~ 99%) 
increases our confidence in the prediction quality. We 
then classified the ASVs using the recent SILVA SSU 
Ref NR database release v.138 [86] using qiime feature-
classifier classify-sklearn command, and then combined 
the taxonomic information with the abundance table to 
generate a BIOM file. The rooted phylogenetic tree, also 
generated using the QIIME2 framework, along with the 
above BIOM file as well as the functional tables from 
PICRUSt2 were then used in the downstream statistical 
analyses in R. For visualization, the clip arts were either 
drawn by the authors or using the repository https:// 
creaz illa. com/ where stock images are available freely for 
personal or commercial projects without asking for per-
mission from the original authors.

Statistical methods
As a pre-processing step, we removed typical contami-
nants such as Mitochondria, and Chloroplasts, as well as 
any ASVs that were unassigned at all levels, as per rec-
ommendations given at https:// docs. qiime2. org/ 2022.8/ 
tutor ials/ filte ring/. We further used R’s decontam pack-
age [84] to identify and remove contaminants (11 ASVs) 
from 4 negative control samples, by employing the Preva-
lence Method. Of 170 samples, only 117 samples were rel-
evant to this study. After filtering out low yield samples 
(< 2000 reads), we were left with a final abundance table 
of n = 93 samples  ×  P = 3437 ASVs, on which we per-
formed the statistical analyses. The summary statistics of 
sample-wise read distributions are as follows: [Minimum: 
13,622; 1st Quartile: 19,732; Median: 21,655; Mean: 
22,356; 3rd Quartile: 24,993; Maximum: 36,990].

Diversity measures
R’s vegan package [87] was used for alpha and beta diver-
sity analyses. For alpha diversity we used: (i) Shannon 
entropy; and (ii) rarefied richness.

Beta diversity was calculated using four different dis-
tance measures: (i) Bray–Curtis distance on the ASV 
abundance table to visualize the compositional changes; 
(ii) Unweighted UniFrac distance estimated using R’s 
Phyloseq package [88] to see changes between samples 
in terms of phylogeny; (iii) Weighted UniFrac, abundance 
weighted version of UniFrac; and (ii) Hierarchical Meta-
Storms (HMS) [89]. Ordination of ASV table in reduced 
space (beta diversity) was done using Principal Coor-
dinate Analysis (PCoA) using the R’ Vegan’s package, 
mainly using Bray–Curtis distance. Additionally, Vegan 
package was also used to perform PERMANOVA analy-
ses to see if the microbial or functional community struc-
tures can be explained by different sources of variability.

Core microbiome
To identify core microbiome, we have used the approach 
discussed in [90].The approach first ranks the ASVs by 
occupancy (from highly prevalent to lowly prevalent) 
according to study design, and then calculates the mini-
mal prevalence threshold dynamically by learning from 
the data. After ranking the ASVs, the subset of core taxa 
is constructed incremently by adding highly prevalent to 
lowly prevalent, and then quantifying the contribution of 
the core subsets to beta diversity using the Bray–Curtis 
distance in the equation, C = 1−

BCcore
BCall

 . The authors 
have specified two approaches to decide at what thresh-
old the core subset construction stops: (a) where addition 
of an ASV does not cause more than 2% increase in the 
explanatory value by Bray–Curtis distance; and (b), an 
“elbow” approach where first order differences are calcu-
lated by partitioning the curve in two parts, and calculat-
ing the difference in the average rates of change for both 
of these parts. A point at which this difference is maxi-
mized is the elbow point. Approach (b) is very stringent 
and therefore approach (a) was used as recommended by 
the original authors. Independently, a neutral model [91] 
is fitted to the “S” shaped abundance-occupancy distribu-
tions inform the ASVs that are likely selected by the envi-
ronment. These are obtained as those that fall outside the 
95% confidence interval of the fitted model, and are 
inferred to be deterministically assembled, rather than 
neutrally selected, with those that are above the model 
selected by the host environment (represented by red 
colour), and those points below the model are dispersal 
limited (represented by blue colour).

To incorporate heterogeneity caused by spatial/cross-
sectional consideration (province of residence, gender, 
etc. of all the subjects who gave their gut samples), we 
have used two approaches as per original author’s sugges-
tion: a) a conservative and restrictive approach (no site-
specific occupancy) where all discrete samples contribute 
equally to the calculation of occupancy, expressed as a 

https://creazilla.com/
https://creazilla.com/
https://docs.qiime2.org/2022.8/tutorials/filtering/
https://docs.qiime2.org/2022.8/tutorials/filtering/
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proportion of 1 (or a percentage out of 100%), returning 
only those ASVs that are detected in every sample, and 
is sometimes biased towards more abundant ASVs; and 
a site specific approach, where occupancy is viewed as a 
detection within a particular location (province of resi-
dence) or type (gender), such that as long as the ASVs is 
represented in each province of residence/gender (not 
necessarily in all replicates within that province), it is 
counted as occurring there. The latter approach returned 
ASVs that are prone to return false-positive core ASVs, 
however, on average, it picks up medium to low abun-
dant, and low occupancy ASVs. We then used the neu-
tral modelling approach to partition these core ASVs to 
those that are neutral, and those that are above/below the 
model fit (deterministically assembled).

Covariates associated with microbial community distribution
To find the relationship between microbial communities 
and all sources of variation, including dietary patterns (as 
self-reported by subjects in filled questionnaires, given 
at the end of this document), we have used General-
ised Linear Latent Variable Model (GLLVM) [92] which 
extends the basic generalized linear model that regresses 
the mean abundances of microbes against all sources of 
variation, even those that are not directly observed, as 
confounding latent variables. GLLVM extends the basic 
generalized linear model that regresses the mean abun-
dances µij (for i-th sample and j-th microbe) against 
covariates xi  by incorporating latent variables ui as 
g
(

µij

)

= ηij = αi + β0j + x
T
i β j + u

T
i θ j , where β j are the 

microbe specific coefficients associated with individual 
covariates. Once estimated, a 95% confidence interval 
of these coefficients, whether positive or negative, and 
not crossing 0 gives directionality, i.e., the interpretation 
that an increase or decrease (if the covariate is categori-
cal in nature then we use the word “inclusion”) of that 
particular covariate causes an increase or decrease in the 
abundance of the microbe). and θ j are the correspond-
ing coefficients associated with latent variable. β0j are 
microbes specific intercepts, whilst αi are optional sam-
ple effects which can either be chosen as fixed effects or 
random effects. To model the distribution of individual 
microbes, we have used Negative Binomial distribution 
with an additional dispersion parameter, and using log() 
as a link function. Additionally, the approximation to the 
log-likelihood is done through Variational approximation 
(VA) with final sets of parameters in glvmm() function 
being family = ‘negative.binomial’, method = “VA”, and 
control.start = list(n.init = 7, jitter.var = 0.1)that seemed to 
fit well. This, we did for top 100 most abundant genera. 
In addition, the factor loadings  θ j store correlations of 
microbes with the residual covariance matrix � = ŴŴT 
where Ŵ = [θ1 . . . θm] for m latent variables. This residual 

covariance matrix gave co-occurrence relationship 
between microbes that is not explained by the observed 
covariates.

Contingency analysis
To analyses the self-reported questionnaires, and to see 
if any two categorical covariates have a relationship, 
we constructed a contingency table and used χ2 test of 
independence using chisq.test() function in R. Based 
on recommendations given in http:// www. sthda. com/ 
engli sh/ wiki/ chi- square- test- of- indep enden ce- in-r, and 
where the χ2 test was significant, we then calculated the 
χ
2 residuals for individual rows and columns of the con-

tingency table. These were drawn using R’s corrplot [93] 
package where positive values in cells specify an attrac-
tion (positive association; blue) between the correspond-
ing row and column variables whilst negative values 
implies a repulsion (negative association; red) between 
the corresponding row and column variables. Addition-
ally, we fitted a generalised linear model using glm() 
function using Freq ~ A + B model on the contingency 
table’s observed frequencies contingent upon all the fac-
tors for two covariates A, and B, and fitted using Poisson 
distribution. This then gave us incidence rate ratios for 
factors that were found to be significant.
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Additional file 3. Meta data accompanying samples uploaded to the 
ENA repository PRJEB59240, and contains demographics, dietary, sleeping 
patterns, and routine life style information.
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