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Abstract
Background Age-related gut microbial changes have been widely investigated over the past decade. Most of 
the previous age-related microbiome studies were conducted on the Western population, and the short-read 
sequencing (e.g., 16S V4 or V3-V4 region) was the most common microbiota profiling method. We evaluated the gut 
compositional differences using the long-read sequencing approach (i.e., PacBio sequencing targeting the full-length 
V1-V9 regions) to enable a deeper taxonomic resolution and better characterize the gut microbiome of Singaporeans 
from different age groups.

Results A total of 83 research participants were included in this study. Although no significant differences were 
detected in alpha and beta diversity, our study demonstrated several bacterial taxa with abundances that were 
significantly different across age groups. With young individuals as the reference group, Eggerthella lenta and 
Bacteroides uniformis were found to be significantly altered in the middle-aged group, while Catenibacterium mitsuokai 
and Bacteroides plebeius were significantly altered in the elderly group. These age-related differences in the gut 
microbiome were associated with aberrations in several predicted functional pathways, including dysregulations of 
pathways related to lipopolysaccharide and tricarboxylic acid cycle in older adults.

Conclusions The utilization of long-read sequencing facilitated the identification of species- and strain-level 
differences across age groups, which was challenging with the partial 16S rRNA sequencing approach. Nevertheless, 
replication studies are warranted to confirm our findings, and if confirmed, further in vitro and in vivo studies are 
crucial to better understand the impact of the altered levels of age-related bacterial taxa. Additionally, the modest 
performance of strain-level taxonomic classification using 16S-ITS-23S gene sequences, likely due to the limited depth 
of currently available alignment databases, highlights the need for optimization and refinement in curating these 
databases for the long-read sequencing approach.
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Background
According to the 2023 United Nations Report, the global 
aging population over the age of 65 is projected to reach 
1.6 billion by 2050 [1]. While this significant increase in 
life expectancy is a remarkable achievement, it is accom-
panied by a rise in disability rates, potentially leading to 
higher healthcare costs. Understanding how environ-
mental and biological factors contribute to unhealthy 
aging is therefore essential. Generally, the composition of 
the human gut microbiota remains relatively stable dur-
ing early and mid-adulthood. However, as individuals 
age, the stability of the gut microbiome may be disrupted 
due to various factors such as biological aging processes, 
changes in health status, and diet [2, 3].

A growing body of evidence suggests alterations in gut 
microbial composition in aged individuals. However, 
current knowledge on aging and the gut microbiome is 
predominantly derived from studies conducted in the 
Western world [4, 5] and, to some extent, China [6, 7]. 
There is a lack of similar studies from ASEAN countries, 
such as Singapore, which has an ethnically diverse popu-
lation (i.e., Chinese, Malay, and Indian) practicing con-
trasting lifestyles. Furthermore, most previous studies 
have utilized the 16S ribosomal ribonucleic acid (rRNA) 
sequencing method (e.g., V3-V4 region [5, 8, 9]), which 
has several limitations.

Short-read sequencing of the bacterial 16S rRNA gene 
is often used to profile the gut microbiome due to its 
cost-effectiveness. The 16S rRNA gene, which is 1.5  kb 
in length, covers nine hypervariable regions. Amplicon-
based 16S rRNA gene sequencing allows the amplifica-
tion of selected variable regions only. The limited read 
length of the short-read sequencing approach, combined 
with amplification bias, often results in low taxonomic 
resolution [10, 11]. To overcome these limitations, some 
studies have utilized shotgun metagenomics sequenc-
ing, which provides better sensitivity and resolution by 
fragmenting the whole genome into smaller pieces of 
deoxyribonucleic acid (DNA) and then reassembling the 
fragments using overlapping regions. However, shot-
gun metagenomics sequencing often requires significant 
computational power and is costly.

Long-read sequencing is a cost-effective alterna-
tive to shotgun metagenomics and offers better taxo-
nomic resolution than short-read 16S rRNA sequencing. 
This method allows the entire 16S rRNA gene (i.e., all 
nine variable regions), extending to the Internal Tran-
scribed Spacer (ITS) and 23S rRNA gene regions, to be 
sequenced. Although some may argue that long-read 
sequencing has lower accuracy (∼ 90%), the recent devel-
opment of circular consensus sequencing (CCS) from 
PacBio and improved methodologies to remove poly-
merase chain reaction (PCR)-related errors have enabled 
researchers to discriminate sequences differing by a 

single nucleotide across an entire gene with an average 
length of up to 13.5 kb with 99.8% accuracy [11, 12]. This 
allows for the identification of intragenomic 16S gene 
copy variants within a taxon, enabling easier distinction 
of species and strains (sub-species) and preventing the 
over-estimation of bacterial diversity [10, 13].

Therefore, in this study, we utilized the long-read 
sequencing approach to investigate the gut microbiome 
profiles of individuals from different age groups, with the 
aim to better characterize and understand the gut micro-
bial differences at species-level.

Methods
Data and sample collection
Singapore residents above age of 21 were recruited from 
AMILI’s Poop Saves Life campaign which was a public 
outreach program, where 83 participants were selected 
for this study. Participants were selected if they fulfilled 
the following criteria: (1) ethnicity of Chinese, Malay, or 
Indian, (2) no use of antibiotics three months prior to 
recruitment, (3) no regular use of proton pump inhibi-
tors, and (4) absence of gastrointestinal diseases such as 
inflammatory bowel disease and colon disease. Written 
informed consent was obtained from all participants and 
the study was approved by AMILI Institutional Review 
Board (reference number 2020/0501) in accordance with 
ethical guidelines.

Basic socio-demographic information and medical 
history, including age and body mass index (BMI), were 
collected from each participant. Information on daily 
dietary intake were recorded using a locally-validated 
Food Frequency Questionnaire (FFQ) [14]. Stool sam-
ples were collected in DNA/RNA shield stool collection 
kit (Zymo Research, Irvine, California, USA). The stool 
collection kit and a detailed instruction sheet on stool 
collection (Additional File 1) were provided to the par-
ticipants. After sample collection, stool samples were 
sent to the laboratory via post. All samples reached the 
laboratory within a week from sample collection. Upon 
receiving, the fecal samples were aliquoted and frozen at 
-80 °C until further sample processing.

Sample preparation
Total DNA was extracted from the fecal samples using 
the QIAmp PowerFecal Pro DNA extraction kit (Qia-
gen, Hilden, Germany) following the manufacturer’s 
instructions. The full-length 16S-ITS-23S rRNA gene 
was amplified by PCR using consensus sequences 
27F 5’-AGRRTTYGATYHTDGYTYAG-3’ and 23SR 
5’-AGTACYRHRARGGAANGR-3′. Amplicon librar-
ies were created using the Shoreline Complete StrainID 
kit (Shoreline Biome, Farmington, Connecticut, US) and 
sequenced on PacBio Sequel II system.
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Sequence and predictive functional analyses
The raw 16S-ITS-23S rRNA gene sequences were first 
quality-filtered and denoised using DADA2 version 
1.22.0 [15] and subsequently imported into SBanalyzer 
software for strain-level microbial identification using 
the Athena database. For the analysis of 16S V1-V9 gene 
sequences, the raw 16S-ITS-23S rRNA gene sequences 
were first trimmed to the 16S V1-V9 region using cut-
adapt version 3.7 [16] based on primer sequences F27 
(AGRGTTYGATYMTGGCTCAG) and R1492 (AAGTC-
GTAACAAGGTARCY). The trimmed sequences were 
then quality-filtered and denoised using DADA2 version 
1.22.0 [15]. After that, filtered reads were grouped into 
amplicon sequence variants (ASVs). To maximize the 
assignment rate, each ASV was first taxonomically clas-
sified based on GTDB r207 [17], followed by Silva v138 
[18], and lastly RefSeq + RDP [19, 20]. The microbial gene 
content was then inferred from the taxa abundance using 
PICRUSt2 [21].

ASV sequences corresponding to the differentially 
abundant bacterial species detected using the 16S V1-V9 
dataset were extracted and searched against the ASV tax-
onomy table of the 16S-ITS-23S dataset. The 16S-ITS-
23S ASVs that have similar gene sequences and that were 
assigned to the same species were analyzed to obtain 
strain-level information.

Statistical analysis
All statistical analyses were carried out using R ver-
sion 4.1.2. All tests were considered significant at 
p-value < 0.05. All p-value adjustments were based on the 
Benjamini-Hochberg procedure. Alpha diversity mea-
surements (Shannon, Chao1, and Pielou’s index) were 
computed using the microbiome R package version 1.16.0 
[22]. Beta diversity measures were inferred by first trans-
forming the data based on centered log-ratio to account 
for compositionality [22, 23]. The Aichitson distance 
was used for principal coordinate analysis (PCoA) and 
permutational multivariate analysis of variance (PER-
MANOVA) (1000 permutations). PERMANOVA was 
carried out using the adonis2 function in vegan version 
2.6.2 [24]. Differentially abundant taxa/pathways across 
different age groups (adjusted p-value < 0.05) were iden-
tified based on the analysis of compositions of microbi-
omes with bias correction 2 (ANCOM-BC2) method 
[25].

Results
Subjects’ characteristics
A total of 83 participants were included in this study. 
Following the age cut-offs used by several prior studies 
[9, 26, 27], participants were grouped into different age 
groups, as follows: (1) young (age < 36; n = 25), (2) middle-
aged (36 ≤ age < 56; n = 30), and (3) old (age ≥ 56; n = 28). 

The demographics and basic characteristics of the cohort 
are summarized in Table  1. There were no significant 
differences in sex, BMI, race, smoking status and daily 
dietary intake among the three groups included in this 
study.

Comparisons of taxonomy classification of 16S-ITS-23S vs. 
16S V1-V9 datasets
The original 16S-ITS-23S sequencing data yielded a 
total of 2,327,728 gene sequences (mean = 28,045; stan-
dard deviation = 8,494; min = 11,147; max = 49,313). After 
the alignment against Athena database, nine phyla, 14 
classes, 26 orders, 45 families, 83 genera, and 144 species 
were detected (Additional File 2: Supplementary Table 
1). Of the 2,740 features, 1,843 (67.3%) and 1,111 (40.5%) 
reached species- and strain-level resolution, respectively. 
Notably, there were only 59 different strains found in 
the output of this sequencing dataset. Given that bac-
terial strains can differ by only a few bases, the limited 
strain-level information obtained using the 16S-ITS-23S 
sequences is likely due to the limited depth of the Athena 
database.

To maximize the utility of our data, we trimmed the 
16S-ITS-23S sequences to the 16S V1-V9 region, aim-
ing to identify more distinct species. This 16S V1-V9 
sequencing dataset yielded 1,937,509 gene sequences, 
with an average of 23,343 sequences per sample (ranging 
from 9,127 to 44,382, with a standard deviation of 8,783). 
After quality filtering using the DADA2 R-package and 
assigning taxonomy based on three different reference 
databases, we identified eight phyla, 19 classes, 40 orders, 
76 families, 182 genera, and 299 species. Of the 2,307 
ASVs, 2,031 (88.0%) reached species-level resolution 
(Additional File 2: Supplementary Table 1). Since the tax-
onomic classification of 16S V1-V9 data provided more 
information, we proceeded the subsequent analyses using 
this dataset, unless otherwise specified.

Comparisons of bacterial richness (alpha diversity) and 
composition (beta diversity) across age groups
No significant differences were detected in all diversity 
indices across the three age groups (Wilcoxon rank-sum 
test, adjusted p-value > 0.05; Fig.  1A). However, partici-
pants of older age generally exhibited higher alpha diver-
sity than younger participants.

PERMANOVA revealed that age groups explained 
about 2.8% of the overall variation in gut microbiome 
composition, although this was not statistically signifi-
cant (R² = 0.028, p-value = 0.098). Additionally, the com-
plementary PCoA analysis showed modest separation 
among age groups (Fig. 1B). Age (on a continuous scale) 
(R² = 0.015, p-value = 0.089), as well as the rest of the 
potential confounding factors, including sex (R² = 0.012, 
p-value = 0.399), BMI (R² = 0.016, p-value = 0.155), race 
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(R² = 0.025, p-value = 0.435), smoking status (R² = 0.029, 
p-value = 0.117), and various dietary parameters, did not 
significantly contribute to differences in gut microbial 
composition (Table 2).

Differentially abundant taxa across age groups
Using young participants as the reference group, we 
identified twelve and ten bacterial species that were dif-
ferentially abundant in the middle-aged and old groups, 
respectively (adjusted p-value < 0.05, Fig.  2A). However, 
only four differentially abundant taxa (i.e., Eggerthella 
lenta [adjusted p-value = 0.049], Bacteroides uniformis 
[adjusted p-value = 0.033], Catenibacterium mitsuo-
kai [adjusted p-value = 0.004] and Bacteroides plebeius 

[adjusted p-value = 0.030]) passed sensitivity tests for the 
pseudo-count addition. This step helps to mitigate the 
risk of inflated false-positive rates due to the implementa-
tion of pseudo-count in ANCOM-BC2 [25]. E. lenta was 
significantly increased in the middle-aged group, while 
B. uniformis was significantly reduced in the same group. 
On the other hand, the abundances of B. plebeius and 
C. mitsuokai were significantly increased and reduced, 
respectively, in the old group. Interestingly, when the 
ASV gene sequences of the four differentially abundant 
bacterial species were compared against the 16S-ITS-
23S output, we identified E. lenta DSM 2243 to be exclu-
sively present in the middle-aged subgroup. However, it 
is important to note that the bacterial strain was detected 

Table 1 Demographics and characteristics of subjects included in the study
Young (< 36 years) Middle-aged (36–55 years) Old (≥ 56 years) p-value

Sample size (N) 25 30 28 -
Age (years) 28.0 [6.0] 43.5 [8.8] 66.0 [10.3] 0.001*
Sex
 Male
 Female

12 (48.0)
13 (52.0)

15 (50.0)
15 (50.0)

13 (46.4)
15 (53.6)

0.963

BMIa 24.1 [4.2] 22.7 [5.3] 22.9 [5.7] 0.496
BMI categorya, b

 Underweight
 Normal
 Overweight
 Obese

1 (4.0)
6 (24.0)
11 (44.0)
3 (12.0)

0 (0.0)
14 (46.7)
7 (23.3)
6 (20.0)

4 (14.3)
10 (35.7)
9 (32.1)
4 (14.3)

0.169

Race
 Chinese
 Malay
 Indian

24 (84.0)
1 (4.0)
0 (0.0)

27 (90.0)
0 (0.0)
3 (10.0)

27 (96.4)
0 (0.0)
1 (3.6)

0.252

Smoking status
 Non-smoker
 Past smoker
 Current smoker

24 (84.0)
1 (4.0)
0 (0.0)

26 (86.7)
3 (10.0)
1 (3.3)

28 (100.0)
0 (0.0)
0 (0.0)

0.276

Dietary intakec

Total energy (kcal/day)
 Total protein (g/day)
 Total fat (g/day)
  Saturated fatty acids (g/day)
  Monounsaturated fatty acids (g/day)
  Polyunsaturated fatty acids (g/day)
 Total carbohydrate (g/day)
  Starch (g/day)
  Sugar (g/day)
 Total fiber (g/day)
 Vitamin A (mg/day)
 Vitamin C (mg/day)
 Calcium (mg/day)
 Iron (mg/day)
 β-carotene (mg/day)
 Thiamin (mg/day)
 Riboflavin (mg/day)
 Potassium (mg/day)
 Zinc (mg/day)

2417.6 [977.1]
91.5 [42.6]
101.3 [23.8]
38.3 [14.4]
38.8 [11.8]
17.0 [6.5]
278.6 [192.6]
172.8 [158.6]
62.6 [43.7]
18.1 [7.8]
871.8 [489.1]
82.5 [48.1]
597.7 [410.8]
16.8 [6.3]
2920.6 [2586.1]
1.4 [1.1]
1.7 [0.7]
2436.0 [1012.6]
11.1 [4.9]

2052.9 [773.4]
83.8 [43.1]
87.6 [26.8]
31.7 [11.6]
34.1 [15.7]
17.0 [6.6]
245.0 [112.1]
145.8 [103.0]
67.6 [41.8]
18.0 [7.9]
758.5 [249.3]
82.6 [49.1]
619.9 [293.9]
15.7 [8.2]
2396.3 [1710.9]
1.5 [0.7]
1.6 [0.8]
2183.9 [749.2]
10.2 [5.7]

1986.4 [1221.5]
83.3 [73.4]
77.5 [58.5]
25.5 [17.8]
29.2 [26.8]
17.3 [11.7]
221.2 [189.0]
148.8 [159.2]
73.9 [34.8]
18.0 [11.3]
771.1 [523.4]
90.9 [63.8]
648.9 [419.7]
15.5 [7.8]
2709.5 [2312.2]
1.4 [0.9]
1.6 [1.0]
2398.8 [1510.2]
10.1 [6.7]

0.396
0.550
0.230
0.099
0.219
0.919
0.449
0.191
0.647
0.922
0.863
0.578
0.786
0.735
0.299
0.899
0.971
0.296
0.371

Non-normally distributed continuous data are presented as median [interquartile range], while categorical data are reported as n (%). p-values are obtained using 
Kruskal-Wallis test (for non-normally distributed data) or chi-square test (for categorical data). aInformation available for 75/83 participants. bBased on the Asian BMI 
cut-off (i.e., underweight: BMI < 18.5 kg/m2; normal: 18.5 kg/m2 ≤ BMI < 23.0 kg/m2; overweight: 23.0 kg/m2 ≤ BMI < 27.5 kg/m2; obese: BMI ≥ 27.5 kg/m2). cInformation 
available for 79/83 participants
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in only 8/30 (26.7%) of them (Additional File 2: Supple-
mentary Table 2).

At the genus level, Olsenella was found to be sig-
nificantly increased in middle-aged participants 
(adjusted p-value < 0.001), while Holdemanella (adjusted 
p-value < 0.001) was significantly increased and Cateni-
bacterium (adjusted p-value = 0.004) was significantly 
reduced in the old subgroup. Additionally, bacteria from 
the Atopobiaceae family were found to be increased in 
the gut microbiome of middle-aged individuals (adjusted 
p-value < 0.001). All four differentially abundant bacterial 
taxa had an adjusted p-value < 0.05 and passed the sensi-
tivity tests. The complete list of bacterial classes, orders, 
families, and genera detected to be differentially abun-
dant in the middle-aged and old groups, with young indi-
viduals as the reference, is provided in Additional File 2: 
Supplementary Fig. 1.

Differentially abundant bacterial taxa were also iden-
tified in pairwise comparisons between all possible 
combinations of the age groups. Bacterial species with 
abundances that were significantly different between any 
two groups (adjusted p-value < 0.05), as well as passed 
the sensitivity tests, are listed in Supplementary Table 3 
(Additional File 2), along with their respective log fold 
changes and adjusted p-values.

Predictive functional analysis
With young individuals as the reference, predictive 
functional analysis revealed a total of eight metabolic 
pathways that differed significantly across age groups 
(adjusted p-value < 0.05; Fig.  2B). Among these, three 
pathways were significantly downregulated in the mid-
dle-aged subgroup, including (1) superpathway of UDP-
N-acetylglucosamine-derived O-antigen building blocks 

Table 2 Effects of age groups and various potential confounders 
on gut microbiome compositional differences
Factor R2 value p-value
Age groups 0.028 0.098
Age 0.015 0.089
Sex 0.012 0.399
BMIa 0.016 0.155
Race 0.025 0.435
Smoking status 0.029 0.117
Dietary intakeb

Total energy 0.015 0.211
Total protein 0.015 0.218
Total fat 0.014 0.222
 Saturated fatty acids
 Monounsaturated fatty acids
 Polyunsaturated fatty acids

0.016
0.014
0.011

0.131
0.279
0.718

Total carbohydrate 0.015 0.214
 Starch
 Sugar

0.014
0.017

0.306
0.079

Total fiber 0.014 0.299
Vitamin A 0.013 0.436
Vitamin C 0.013 0.510
Calcium 0.015 0.251
Iron 0.014 0.301
β-carotene 0.011 0.727
Thiamin 0.014 0.290
Riboflavin 0.015 0.210
Potassium 0.014 0.270
Zinc 0.013 0.464
All datasets were first transformed using centered log-ratio transformation 
to account for compositionality. The Euclidean distance was then used 
for permutational multivariate analysis of variance (PERMANOVA). The R2 
value indicates the effect size, while p-value < 0.05 is considered significant. 
aCalculated based on 75 samples. bCalculated based on 79 samples

Fig. 1 Comparisons of alpha diversity and beta diversity across age groups. (A) Alpha diversity is measured using the Shannon diversity index, Chao1 
diversity index, and Pielou’s evenness index. No significant differences were detected in any of the diversity indices across the three age groups (Wil-
coxon rank-sum test, adjusted p > 0.05). (B) PCoA demonstrating insignificant separation in the gut microbial composition of individuals from different 
age groups (PERMANOVA; R² = 0.028, p = 0.098). Each data point represents a single sample. The distance between data points reflects the differences 
between samples
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biosynthesis, (2) superpathway of 2,3-butanediol bio-
synthesis and (3) chondroitin sulfate degradation I. The 
remaining five functional pathways were differentially 
abundant in the elderly group, with the superpathway of 
(Kdo)2-lipid A biosynthesis, superpathway of heme b syn-
thesis from glycine, aerobactin biosynthesis and 3-phen-
ylpropanoate degradation being significantly increased, 
while L-histidine degradation II being significantly down-
regulated. However, it is important to note that these 
pathways did not pass the ANCOM-BC2 sensitivity tests.

Discussion
In this study, we investigated the association between age 
and gut microbial composition in individuals residing in 
Singapore. To the best of our knowledge, this is the first 
full-length 16S rRNA gene assessment of the gut micro-
biota in a multi-ethnic country. Previous studies evalu-
ating the effect of age on the gut microbiome primarily 
used a short-read 16S rRNA gene sequencing approach 
(e.g., V3-V4 region: ∼460 base pairs [5, 8, 9, 28]). The 
limited resolution of short-read sequencing often fails to 
detect bacterial changes at the species/strain level, which 
can affect data interpretation. In our work, we utilized 
the long-read sequencing approach (i.e., PacBio sequenc-
ing) to explore age-related gut microbiome alterations for 

the first time. In addition to replicating previous findings, 
our study unveiled several novel differentially abundant 
taxa and predicted functional pathways associated with 
age.

Overall, no significant differences were detected in 
alpha diversity across all age groups, although there was 
an increasing trend with age. de la Cuesta-Zuluaga et al. 
(2019) reported a minimal association between gut bio-
diversity and age in a Chinese cohort, contrasting with 
the significant positive correlation found in cohorts from 
the United States, United Kingdom, and Colombia [29]. 
This finding supports our results, as nearly all partici-
pants in our study are Chinese (n = 78; 94.0%). However, 
it is well established that individuals of the same ethnicity 
may exhibit different gut microbial profiles when resid-
ing in different geographical regions [30]. Therefore, fac-
tors such as ethnicity, geographical location, and dietary 
habits must be controlled when investigating the gut 
microbiome.

To ensure a more robust interpretation of age-related 
gut microbiome changes, we investigated the effects of 
various potential confounders, including sex, BMI, eth-
nicity, smoking status, and daily dietary intake, on the 
overall gut microbiome composition of our cohort. None 
of these potential confounders significantly contributed 

Fig. 2 Differentially abundant bacterial species and predicted functional pathways. The analysis was conducted using the ANCOM-BC2, with young 
individuals as the reference group. The columns represent age groups, while the rows show differentially abundant (A) bacterial taxa or (B) predicted 
functional pathways. Cell colors indicate log fold changes, with blue representing a significant reduction and red representing a significant increase 
(darker colors correspond to greater log fold changes). The log fold changes relative to the reference (i.e., young) group are noted in each cell. Values in 
white font indicate log fold changes that are significant at an adjusted p-value < 0.05, while values in bold black font indicate log fold changes that are 
significant at an adjusted p-value < 0.05 and passed sensitivity tests for pseudo-count addition
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to the overall gut microbiome differences in the cohort. 
We also did not observe significant effects of age groups 
or age (on a continuous scale) on the overall gut micro-
bial composition of the participants, which was fur-
ther supported by the modest separation observed in 
the PCoA analysis. While these insignificant findings 
could be attributed to the study’s limited sample size, 
the lack of significant differences in gut microbial com-
position across age groups is consistent with results from 
two independent Japanese studies [9, 28]. Although the 
exact reasons for discrepancies with other age-related 
gut microbiome studies are unclear, this could be partly 
due to their Asian origin or the health of participants 
(i.e., participants were relatively healthy). Further inves-
tigations are warranted to better understand these 
observations.

Despite the insignificant differences in alpha and beta 
diversity, several differentially abundant bacterial taxa 
were detected among the age groups. For instance, a 
notable decrease in Bacteroides uniformis was observed 
in the gut microbiome of middle-aged individuals, while 
Bacteroides plebeius was significantly elevated in the old 
group. These findings align with multiple earlier studies, 
which reported contrasting findings on the abundances 
of Bacteroides in the gut microbiome of individuals 
from different age groups. Some studies documented 
increased levels in younger adults [4, 8], while others 
reported higher abundances in the elderly group [28, 31]. 
Interestingly, recent investigations have also linked the 
differential abundance of Bacteroides to the overall health 
status of the study group [5, 32]. Collectively, these find-
ings underscore the importance of employing sequencing 
techniques that provide precise taxonomic assignments 
down to the species/strain level, thereby facilitating a 
more comprehensive delineation of the gut microbiome 
and permitting a more accurate understanding of the 
microbial ecology associated with specific conditions.

In the pairwise comparison between middle-aged and 
old groups, we found that elderly individuals exhibited a 
significantly higher abundance of Klebsiella pneumoniae 
(as well as the Klebsiella genus) in their gut microbiome. 
The elevated level of K. pneumoniae in older individuals 
is believed to be associated with factors such as increased 
use of medication [33] or inflammation linked to inter-
leukin-6 [34], both of which are common in older indi-
viduals. This bacterium, which is known to be a pathogen, 
may contribute to health issues frequently observed in 
this age group. Given the potential health implications, 
future investigation should aim to validate this finding 
through larger, longitudinal studies. If confirmed, fur-
ther research should explore the specific implications of 
changes in K. pneumoniae level in older adults.

Besides replicating previous research findings, our 
study revealed several novel differentially abundant 

bacterial species that have not been previously reported. 
These include increased abundances of Eggerthella lenta 
in middle-aged participants and reduced levels of Cateni-
bacterium mitsuokai in elderly individuals. E. lenta, a 
bacterium belonging to the Coriobacteriaceae family, 
is known as an opportunistic pathogen implicated in 
various conditions and infections [35]. This gut bacte-
rium is also involved in the inactivation of the cardiac 
drug digoxin [36]. While E. lenta may negatively impact 
human health, it is crucial to obtain strain-level informa-
tion to elucidate its exact role in the aging-related gut 
microbiome. C. mitsuokai, on the other hand, is generally 
considered part of the normal human gut microbiome 
[37]. Previous studies have linked C. mitsuokai with dys-
lipidemia and insulin resistance [38], and a higher abun-
dance of the Catenibacterium genus has been associated 
with a potentially lower risk of frailty [39]. Altogether, 
these findings suggest potential health implications 
related to changes in the levels of C. mitsuokai in the gut 
microbiome. The observed reduction of C. mitsuokai in 
elderly individuals of our cohort could either reflect age-
related alterations in gut microbiome composition or 
represent a compensatory response to the health changes 
commonly seen in old individuals. With the increasing 
emphasis on independent replication of scientific find-
ings, especially in the field of gut microbiome where 
numerous confounders exist [40], further investigations 
are warranted to confirm these findings and explore their 
roles in relation to human age.

Given the importance of understanding the func-
tional implications of changes in the gut microbiome 
across different age groups, we conducted a predictive 
functional analysis using PICRUSt2. Through differen-
tial abundance analysis, we identified several metabolic 
pathways that may be impacted by alterations in the 
gut microbiome. Notably, we observed dysregulated 
pathways related to lipopolysaccharide (LPS) biosyn-
thesis, including the superpathway of UDP-N-acetylglu-
cosamine-derived O-antigen building blocks biosynthesis 
and the superpathway of (Kdo)2-lipid A biosynthesis, in 
older individuals. LPS are outer membrane components 
of gram-negative bacteria, composed of three main 
domains: lipid A, the core oligosaccharide, and the O 
antigen [41]. The dysregulations of LPS-related path-
ways observed in this study suggest the presence of gut 
inflammation in older individuals, potentially activated 
by LPS through toll-like receptor (TLR)-4 signaling [42]. 
Interestingly, we also observed a significant reduction in 
chondroitin sulfate degradation in middle-aged individu-
als. The degradation and fermentation of chondroitin 
sulfate by the human gut microbiota produce significant 
amounts of short-chain fatty acids, which are also known 
to regulate gut permeability and inflammation [43]. Addi-
tionally, elderly individuals demonstrated downregulated 
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degradation of L-histidine and increased degradation of 
3-phenylpropanoate. Aberrations of these two metabolic 
pathways could lead to the production of compounds like 
fumarate, pyruvate and acetoacetate, which are involved 
in the tricarboxylic acid (TCA) cycle, potentially disrupt-
ing central metabolism [44, 45]. However, the functional 
analysis conducted in this study is predicted based on 
microbial abundances, and the differentially abundant 
predicted functional pathways did not pass the ANCOM-
BC2 sensitivity tests, and thus requires cautious interpre-
tation. Further in vitro and in vivo studies are warranted 
to better elucidate the functional implications of age-
related microbial changes in the gut.

Our study is not free from limitations. Although we 
managed to identify several age-related differentially 
abundant bacterial species, most of our results were 
derived using the 16S V1-V9 sequences. This approach 
was necessitated by the modest taxonomic classification 
of 16S-ITS-23S sequences down to species/strain level, 
which is likely attributed to the limited depth of cur-
rently available alignment databases. For instance, using 
Athena database (16S-ITS-23S), only 67.3% and 40.5% of 
the features reached species- and strain-level resolution, 
respectively.

Furthermore, the small sample size of our study may 
impact the robustness of detecting microbiome dif-
ferences across age groups, thereby requiring cautious 
interpretation and further validation in future studies. 
The use of the FFQ provides only a snapshot of the par-
ticipants’ nutritional intake and may not fully capture the 
complexity of diet-microbiota interactions in this study. 
Additionally, the age cut-offs used in this study were 
primarily based on the quartiles and median age of the 
overall cohort, as well as the cutoffs employed by a few 
previous studies. The lack of consistent definitions of age 
cut-offs for young, middle-aged, and old adults in gut 
microbiome research was similarly highlighted by a pre-
vious study [46]. Lastly, the effect of age (as a continuous 
variable) on the gut microbiome was not explored in this 
study due to the lack of significance in beta diversity and 
differential abundance analyses.

Conclusions
Although no significant differences were observed in 
alpha and beta diversity, our study revealed several age-
related differentially abundant bacterial taxa using the 
long-read sequencing method. Specifically, we observed 
altered abundances of Eggerthella lenta (enriched) and 
Bacteroides uniformis (reduced) in middle-aged individu-
als, while the old individuals exhibited significant altera-
tions in the levels of Bacteroides plebeius (enriched) and 
Catenibacterium mitsuokai (reduced). These changes in 
the gut microbiome across age groups had some func-
tional implications, such as dysregulations of LPS-related 

pathways and metabolic pathways involved in the TCA 
cycle. Further studies are warranted to confirm our find-
ings and to better elucidate the impact of age-related 
changes in the gut microbiome. Importantly, the higher 
taxonomic resolution provided by the long-read sequenc-
ing technology used in this study allowed for more spe-
cific identification of bacterial taxa that may have been 
overlooked in previous studies employing the more com-
monly used short-read sequencing method. However, the 
limited depth of currently available alignment databases 
for 16S-ITS-23S sequences hindered the detection of a 
broader range of bacterial species/strains. Further opti-
mization and refinement in the curation of alignment 
databases for 16S-ITS-23S sequences are required to 
resolve the issues faced in this study, as well as to enhance 
the accuracy and comprehensiveness of microbial identi-
fication in future research.
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