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Compatible solutes: the key to Listeria’s success
as a versatile gastrointestinal pathogen?
Roy D Sleator1,2*, Colin Hill2

Abstract

Recently we reported a role for compatible solute uptake in mediating bile tolerance and increased gastrointestinal
persistence in the foodborne pathogen Listeria monocytogenes[1]. Herein, we review the evolution in our under-
standing of how these low molecular weight molecules contribute to growth and survival of the pathogen both
inside and outside the body, and how this stress survival mechanism may ultimately be used to target and kill the
pathogen.

The Gram-positive foodborne pathogen Listeria monocy-
togenes is a causative agent of gastroenteritis [2,3] and in
severe cases, listeriosis, which ranges from a mild flu-
like illness to meningitis, or as infection of the foetus in
pregnant women. Described as a ‘Jekyll and Hyde’ char-
acter [4], L. monocytogenes exhibits saprophytic and
parasitic lifestyles; residing both in decaying plant mat-
ter in the soil [5], and as a transient inhabitant of the
gastrointestinal (GI) tract of several animal species
including man [6].
This physiological robustness (the ability to adapt to a

variety of different environments) results from an ability
to sense and respond rapidly to changes in the external
environment [7]; a response mediated by a complex
arsenal of genes encoding proteins linked to survival
both within and outside of the host [8]. One such
response, which has been the focus of significant research
efforts in our laboratories, is the accumulation (either by
transport [9] or synthesis [10,11]) of compatible solutes -
low-molecular-weight molecules which when amassed to
high intracellular concentrations help ameliorate the
effects of several stressful conditions [12].
The preferred compatible solutes for the majority of

bacteria and those most effective in L. monocytogenes
are the trimethylammonium compounds; betaine, which
is found in relatively high concentrations in foods of
plant origin [13,14] and carnitine, which is most abun-
dant in animal tissues [15]. Functional genomic studies,

coupled with in silico analysis of genome sequences [8],
revealed four putative compatible solute uptake systems
in L. monocytogenes: BetL and Gbu (dedicated to betaine
uptake), OpuC (which transports carnitine and to a les-
ser extent betaine) and OpuB which was designated as a
putative compatible solute uptake system solely on the
basis of sequence homology to the betaine uptake sys-
tem BusA (OpuA) of Lactococcus lactis (Figure 1) [16].
Although initially identified as osmoprotective com-

pounds (facilitating growth of the pathogen in low aw
environments), subsequent studies revealed a multitude
of beneficial effects arising from compatible solute accu-
mulation; including protection against desiccation [17],
low temperature [18] and high pressure [19] stresses
encountered in foods and/or food processing environ-
ments. However, in addition to facilitating growth and
survival in external environments, we have revealed a sig-
nificant role for OpuC (and more specifically carnitine
uptake) in enabling growth and survival of the pathogen
within the host GI tract [15]. Inactivating the opuC gene,
and thus reducing carnitine uptake, resulted in a signifi-
cant reduction in the ability of L. monocytogenes to colo-
nize the upper small intestine and cause subsequent
systemic infection following oral inoculation. Given that
the osmolarity of the gut (equivalent to 0.3 M NaCl)
represents an osmotic challenge to the pathogen and that
carnitine is the most abundant compatible solute in that
environment (0.05 to 0.2% on a fresh weight basis), this
finding was perhaps predictable. But is this the full story?
Is osmotolerance alone responsible for the increased gut
colonization and persistence ascribed to opuC in
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L. monocytogenes, or indeed betL when heterologously
expressed in Bifidobacterium breve? [20]

Double, Double, BilE and Trouble
Despite exhibiting significant sequence similarity to
members of the betaine carnitine choline transporter
(BCCT) family (hence the original Opu nomenclature
for osmoprotectant uptake) OpuB has to date failed to
display any appreciable compatible solute uptake, sug-
gesting an alternative role for the protein. Indeed, a
more detailed bioinformatic analysis of the sequence
revealed two ATP-dependent bile acid permease signa-
ture sequences in the first gene of the operon [21].
Common to bile efflux pumps these motifs suggested a
possible role for OpuB in listerial bile tolerance. Pro-
duced in the liver, stored interdigestively in the gall
bladder and secreted into the duodenum, bile represents
a far more immediate challenge to the pathogen than
osmolarity and, as such, is the foremost innate immune
defense mechanism of the upper small intestine [22].
Phenotypic analysis of the in silico findings using radi-
olabelled bile efflux studies revealed that OpuB did in
fact function as a bile exclusion system - actively extrud-
ing bile from the bacterial cell - a phenotype which sig-
nificantly modulates the virulence potential of the
pathogen. That OpuB functions as a bile tolerance
locus, as opposed to an osmolyte uptake system as was
originally believed, led to its reincarnation as BilE (for
Bile Exclusion) [21].
Notwithstanding its newly ascribed function as a bile

resistance mechanism, the similarity of BilE to compati-
ble solute uptake systems, together with the fact that it
is transcriptionally regulated by the alternative sigma
factor sB [22], along with BetL, Gbu and OpuC [8],

suggested a common function for all four proteins; if
not in osmotolerance then perhaps in bile tolerance...
In support of this hypothesis a systematic analysis of

strains with mutations in the primary compatible solute
uptake systems also revealed roles for OpuC, and to a
lesser extent BetL, in resisting the acute toxicity of bile
[1]. Furthermore, real-time gene expression profiling in
the presence of bile, using a lux gene reporter system,
revealed that both betL and opuC are induced by bile.
Interestingly, while opuC is more highly expressed
in vitro, betL exhibits higher expression levels in vivo.
Significantly, in addition to BetL, Gbu, OpuC and BilE;
sB has also been shown to regulate the expression of
BSH (a bile detoxification system) and, as such, may act
as the master regulator of bile tolerance in the GI tract.

Listeria’s Achilles heel?
The fact that compatible solutes protect L. monocytogenes
at all stages of it lifecycle, from saprophyte to parasite,
makes them a potentially important target for controlling
the pathogen. Regulating the levels and/or availability of
specific compatible solutes in high risk foods, e.g. baby for-
mula (where carnitine is often added as a vitamin-like sup-
plement), is an obvious first step [23]. While pathogen
control during infection may be mediated by ‘smugglin
technology’ - the application of toxic analogues - bacterici-
dal compounds which, because they resemble compatible
solutes, are accumulated by and ultimately kill the patho-
gen. Another approach which has received considerable
attention in recent times is based on the patho-biotechnol-
ogy concept [24-29] - the application of pathogen derived
virulence or stress survival factors for the construction of
improved pharmabiotic strains as biological control agents
[30]. These alternative approaches to pathogen control,
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Figure 1 While in silico analysis of the listerial genome initially identified four putative compatible solute uptake systems (BetL, Gbu,
OpuC and OpuB) [8], functional analysis revealed that OpuB is in fact a Bile exclusion system (hence its reincarnation as BilE).
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borne out of a clear understanding of how the pathogen
adapts to its specific environment (both inside and outside
the host) may ultimately provide us with a viable alterna-
tive to antibiotics for controlling old adversaries such as L.
monocytogenes, as well as new and emerging pathogens -
the so called “super bugs” [26,28].
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