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Background

benefit to the bacteria is lacking.

Helicobacter pylori is a vertically inherited gut commensal that is carcinogenic if it possesses the cag pathogenicity
island (cag Pal); infection with H.pylori is the major risk factor for gastric cancer, the second leading cause of death
from cancer worldwide (WHO). The cag Pal locus encodes the cagA gene, whose protein product is injected into
stomach epithelial cells via a Type IV secretion system, also encoded by the cag Pal. Once there, the cagA protein
binds to various cellular proteins, resulting in dysregulation of cell division and carcinogenesis. For this reason,
cagA may be described as an oncoprotein. A clear understanding of the mechanism of action of cagA and its

Results: Here, we reveal that the cagA gene displays strong signatures of positive selection in bacteria isolated from
amerindian populations, using the Ka/Ks ratio. Weaker signatures are also detected in the gene from bacteria isolated
from asian populations, using the Ka/Ks ratio and the more sensitive branches-sites model of the PAML package.
When the cagA gene isolated from amerindian populations was examined in more detail it was found that the
region under positive selection contains the EPIYA domains, which are known to modulate the carcinogenicity of the
gene. This means that the carcinogenicity modulating region of the gene is undergoing adaptation. The results are
discussed in relation to the high incidences of stomach cancer in some latin american and asian populations.

Conclusion: Positive selection on cagA indicates antagonistic coevolution between host and bacteria, which
appears paradoxical given that cagA is detrimental to the human host upon which the bacteria depends. This
suggests several non-exclusive possibilities; that gastric cancer has not been a major selective pressure on human
populations, that cagA has an undetermined benefit to the human host, or that horizontal transmission of H.pylori
between hosts has been more important in the evolution of H.pylori than previously recognized, reducing the
selective pressure to lower the pathogenicity of the bacteria. The different patterns of adaptation of the gene in
different human populations indicates that there are population specific differences in the human gut environment
- due either to differences in host genetics or diet and other lifestyle features.
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Introduction

Helicobacter pylori is a Gram negative bacterium that
lives in the human stomach as part of the normal gastric
microbiome [1], and is generally present in the majority
of the adult population [2]. The bacterium has co-evolved
with human populations [3] and is well adapted and lar-
gely specific to the human host. The ancestor of H.pylori
was intestinal and during its evolution migrated to the
stomach, facilitated by the evolution of a urease that
combats the stomach’s acid conditions [4,5]. H.pylori
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strains may possess a cag pathogenicity island (cag Pal)
that contains a cagA gene encoding a 128 kDa protein
[6,7]. The cag Pal seems to have entered the H.pylori
genome by lateral gene transfer, after H.pylori differen-
tiated from parental species [2,8]. Many of the genes of
the cag PAI are involved in translocation of the cagA
protein into epithelial cells lining the stomach. However,
the function of the cagA protein itself is unknown. Infec-
tion with cagA+ H.pylori is strongly associated with gas-
tric carcinoma [9-11]; gastric carcinoma is the second
leading cause of death from cancer worldwide [12].
In addition, cagA™ H.pylori is associated with chronic
gastritis and peptic ulcers [13].
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The mechanism of pathogenicity of cagA+ H.pylori is as
follows. The bacteria attaches to the stomach wall and the
cagA protein is injected into an epithelial cell by a bacterial
Type IV secretion system, also encoded by the cag Pal
locus [14]. Once inside the cell, cagA is phosphorylated on
tyrosine residues located within EPIYA domains by mem-
bers of the src kinases such as c-src, Fyn, Yes [15], Lyn [16]
and c-Abl [17]. The cagA protein is membrane associated
and interacts with numerous additional cellular proteins,
including the oncoprotein Src homology 2 domain contain-
ing tyrosine phosphatase (SHP-2 [18]), microtubule affi-
nity-regulating kinase (MARK2 [19]), growth factor
receptor-bound protein 2 (Grb-2 [20]), hepatocyte growth
factor receptor (c-Met [21]), C-terminal Src kinase (Csk
[22]) and p38 (Crk [23]). Tyrosine phosphorylated cagA
recruits and activates SHP-2, apparently mimicking the
action of Gabl [24]. Consistent with the mimicry hypoth-
esis, cagA is able to rescue Gabl deficient Drosophila
mutants [25], which is interesting given that cagA has no
sequence similarity with Gab1l, indeed it has no known
homologs. The interaction with SHP-2 causes inhibition of
its tumor suppressing activity [18]. Epithelial cells that have
been dysregulated adopt the elongated hummingbird phe-
notype [26]. In addition, cagA activates the transcription
factor NF-kB leading to the induction of interleukin 8 (IL-
8) and subsequent inflammation [27]. The activation of
NE-kB occurs via SHP-2.

Variation in the EPIYA domains of cagA results in varia-
tion in the virulences of different cagA+ H.pylori strains
[28]. The EPIYA motifs are located in the C-terminal half
of the cagA protein and are of types A-D. The EPIYA
motifs are the major sites of tyrosine phosphorylation
within the cagA protein. The eastern EPIYA-D motif,
found in asian populations, is associated with stronger
binding to SHP-2, while the western EPIYA-C motif is
not. The presence of the EPIYA-D motif in asian cagA
sequences may be responsible for the high rates of H.pylori
associated disease in asian populations [28].

The study reported here investigates the evolutionary
dynamics of the cagA gene from different human popula-
tions, and shows that the gene displays varying amounts of
positive selection, implying host population genetic differ-
ences in the response to H.pylori infection, and indicating
the benefit of the gene to H.pylori. The region of the cagA
gene under selection contains the EPIYA domains. These
observations are an apparent paradox, given the detrimen-
tal effects of the oncoprotein on the human host; various
scenarios are discussed that may explain the data.

Methods

Sequences and phylogenetic analysis

Complete cagA sequences from different human popula-
tions were obtained from the Genbank database (NCBI)
and are listed in Table 1. Although isolated from a
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Table 1 cagA sequences used in the study
H. pylori strain Accession number Origin
26695 GenBank: NC000915 UK
J99 GenBank: NC000921 Africa(USA)
HPAG1 GenBank: NC008086 Sweden
Shi470 Genbank: NCO10698; Peru

YP001910308 (Perul),

YP001910294 (Peru2)
G27 GenBank: NC011333 [taly
P12 GenBank: CP001217 Germany
V225 GenBank: CP001582 Venezuela
VietnamHP-No36 GenBank: FJ798973 Vietnam
MEL-HP27 GenBank: DQ306710 Central China
F28 GenBank: AB120418 Japan
3K GenBank: DQ985738 India
15818 GenBank: AF083352 Austria
42G GenBank: FJ389581 Hong Kong

white american from Tennessee, the USA sequence has
an african origin [29], hence it is denoted African(USA).
There were two cagA genes in the Peruvian genome,
denoted Perul and Peru2. There is an additional cagA
gene in the Venezuelan genome, however this is likely
to be a pseudogene because of a 119 amino acid dele-
tion on the N terminus. Searching of the Genbank data-
base, and other Helicobacter species did not reveal a
significant homolog of cagA. DNA alignments were con-
structed by first aligning the protein sequences, using
the MAFFT program [30], and then using this alignment
as a template for a DNA alignment, using the PAL2NL
program [31]. Bayesian phylogenetic inference of the
cagA DNA sequences was conducted using the program
MrBayes [32], using a GTR substitution model and a
gamma parameter of 0.84, selected using the jModelTest
program [33]. The simulation was run for 90000 genera-
tions, sampling every 100 generations. A burn-in of 25%
was conducted and the consensus tree was constructed
from the last 25% of the sampled generations.

Partial rRNA sequences for various Helicobacter spe-
cies were obtained from Genbank; these were H.fennel-
liae (GenBank: AF348747), H.acinocychis (GenBank:
NR_025940), H.pylori (GenBank: DQ202383), H.nemes-
trinae (GenBank: AF363064), H.heilmannii (GenBank:
AF506794), H.cetorum (GenBank: FN565164), Helicobac-
ter sp. ‘solnick 9A1-T71’ (GenBank: AF292381), H.bizzo-
zeronii (GenBank: NR026372), H.salomonis (GenBank:
NR026065) and H.felis (GenBank: NR025935). The
sequences were aligned using the MAFFT program and
phylogenetic relationships determined using MrBayes
and a HKY model, selected using the jModelTest pro-
gram. The simulation was run for 10000 generations,
sampling every 100 generations. A burn-in of 25% was
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conducted and the consensus tree was constructed from
the last 25% of the sampled generations.

Positive selection analysis

The cagA gene sequences were analyzed for the presence
of positive selection by likelihood ratio testing, comparing
nested models, null and alternative, using the PAML pro-
gram [34]. Three tests were performed; the branches test
[35,36], sites test [37] and branches-sites test [38]. An
unrooted tree without branch lengths was used for the
analysis, generated by the phylogenetic analysis, and the
codon frequency table option was utilized in all analyses.
Likelihood ratio testing was conducted to determine the
signficance of 2Al, the differences between the log likeli-
hoods of the two models (where | is the log likelihood),
using a x? distribution with 12 degrees of freedom for
the branches model, a % distribution and 2 degrees of
freedom for the sites model and a y* distribution with 1
degree of freedom for the branches-sites model. The null
model used for the branches test was a one-ratio model
where Ka/Ks (®) was the same for all branches, while the
alternative model was the free-ratio model where » was
allowed to vary. The null model for the sites test was
model la (neutral; model = 0, NSsites = 1, fix_omega =
0), and the alternative model was model 2a (selection;
model = 0, NSsites = 2, fix_omega = 0). The null model
for the branches-sites test was modified according to
Yang et al. [39] (neutral; model = 2, NSsites = 2, fix_o-
mega = 1, omega = 1). The alternative model was model
A (selection; model = 2, NSsites = 2, fix_omega = 0).

Results and discussion

Positive selection on cagA

The topology of the phylogenetic tree of the complete H.
pylori cagA sequences reproduces the relationships
between different human populations around the world
(Figure 1), and is consistent with larger scale studies using
concatenated sequences that show that H.pylori has co-
migrated with humans after their exit from Africa [3]. The
reproduction of the evolutionary history of the human
populations in the topology of the cagA tree therefore is
the result of the tight association of H.pylori with its host
[3,40,41]. The cagA sequence obtained from an Indian
individual is located within the clade formed by european
sequences, consistent with results showing that Indian
cagA sequences intercalate with european sequences [42]
and that most H.pylori from India are related to european
strains [43]. The tree also indicates that the Peruvian cagA
sequence has undergone a recent gene duplication; this is
seen in the operon structure (Figure 2). Strong positive
selection on Peru2 indicates that neofunctionalization of
the gene is occurring. Presumably, the gene duplication
results in gene dosage effects; how this affects the patho-
genicity of the strain in unclear. The presence of a

Page 3 of 10

pseudogenized cagA gene in the H.pylori genome isolated
from a Venezuelan amerindian (see Methods) is interest-
ing; the reason for the disparity between the fates of the
duplicated cagA genes in the two related strains is also
unclear. The branch lengths on the phylogenetic tree
show similarity to each other, with the exception of the
Vietnamese lineage; this branch shows considerable accel-
erated evolution.

2Al was calculated as 73.6 for the branches test, which
was statistically significant. Ka/Ks values of greater than 1
were observed for 5 branches (Figure 1); those leading to
the Venezuela (1.56), Perul (1.04) and Peru2 (3.10)
sequences, to the common ancestor of the amerindian
sequences (1.03) and to the lineage leading from the com-
mon ancestor of the asian sequences (1.29). These
branches are subject to positive selection, while the amer-
indian common ancestor is neutral over the length of the
gene.

2Al was calculated as 161 between the null and alterna-
tive models, for the sites test, which was statistically signif-
icant. Estimates of parameters were as follows: py = 0.51,
p1 = 0.49, ®y = 0.03, ®; = 1 (neutral model), py = 0.47, p;
= 0.38, p3 = 0.14, ®g = 0.03, ®; = 1, o, = 3.74 (selection
model). Sites identified as being under positive selection,
with statistical significance according to the Bayes Empiri-
cal Bayes test [39], were: 101, 206, 306, 378, 532, 542, 548,
604, 651, 774, 793, 815, 831, 834, 869, 876, 886, 892, 901,
998, 1004. The numbering was based on the Perul
sequence.

A branches-sites test was conducted on each branch of
the tree. Those lineages found to display positive selec-
tion are listed in Table 2. These included the lineages
previously identified by the branches test, and addition-
ally the african, Italian, Swedish and Vietnamese lineages.
The results showing positive selection in cagA isolated
from various populations are consistent with a McDo-
nald-Kreitman test that shows that partial cagA
sequences isolated from the Mexican population are
under positive selection [44]. Parallel evolution in resi-
dues or different regions of the cagA proteins is not
observed, although residues in the 900 amino acid region
are under stronger diversifying selection, when the Vene-
zuelan and Peru2 genes are examined in a sliding window
analysis (Figure 3). This is an interesting result as this
region of the cagA gene encodes the EPIYA repeats,
which have a role in modulating the carcinogenicity of
the cagA gene. Thus, it would appear that the effects of
diversifying selection may have a direct role in modulat-
ing carcinogenesis.

Population specific differences in positive selection

Positive selection on cagA is likely to be due to avoidance
of the adaptive immune response, IgG, or to enhance
binding to cellular receptors which are antagonistically
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Figure 1 Positive selection on cagA from different H.pylori strains. A phylogenetic consensus tree was constructed as described in Methods
using complete cagA gene sequences. Numbers above and below branches indicate the values of Ka/Ks calculated for each lineage using the
PAML branches test, while numbers after slashes are posterior probabilities of the respective nodes. The scale refers to the average number of

Perui

co-evolving. There is a strong immune response against
the cagA protein (cagA is immunodominant); this may
have led to an ‘arms race’ between host and bacteria, and
hence the signature of positive selection. This is often the
case with extracellular proteins of pathogens, either
located on the cell surface or secreted. There is a prece-
dent in bacteria, with the porB porin gene of Neisseria
gonorrhoeae and meningitidis [45], and a variety of extra-
cellular proteins from Escherichia coli [46]. Secreted slr
proteins from H.pylori also show signatures of positive
selection [47]. This scenario would imply that the regions
of cagA under positive selection are immunogenic.

H.pylori cagA from a range of populations around the
world show evidence of positive selection (using the
branches-sites test); these include sequences from Vene-
zuela, Vietnam, Sweden, Peru, Africa and Italy. However,
as human and H.pylori strains have co-evolved, cagA
genes from some strains have undergone stronger posi-
tive selection, particularly the strains with ancestry in the
human groups that most recently migrated, the asians
and the amerindians [48,49]. The cause of the differences
in strength of selection on the cagA genes presumably
lies in genetic differences at the host level, but is also
potentially mediated by different responses induced by

cagH cagl cagl

cagB cagC/z:ag[l cagE cagF c,agG I , / cagP cagBcagC  cags cagV cagW cagX cagY  cagZ caga cegh
1 1 1 1 | - 1 [} S | 1
o Fhlf EI]D Ii'l T I I - | o
I [ [} 11 AV AN
cagAl cagN cagM cagA2 cag0 cagT cagl cagy cagb cagf cagl

Figure 2 Diagram of the cag Pal from the Peru strain. Indicated in the figure is the position of the duplicated cagA gene.
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Table 2 Statistics of the branches-sites positive selection analysis

Lineage on tree 2@ |  Residues predicted to be under
positive selection (p < 0.05)

Venezuela 4882 794, 834, 837

Vietnam 288.56 202, 274, 275, 277, 278, 279, 281, 282, 283, 287, 461, 834, 895, 896, 899, 900, 901, 903, 905, 908, 910, 911, 912,
913, 914, 915, 916, 917, 918, 919, 920, 921, 922

Sweden 256 1008

Perul 662 665, 799, 803

Peru2 324 186, 198, 667, 808

Ancestral lineage of 30 650

Amerindian strains

Ancestral lineage of Asian 218 -

strains

Africa(USA) 1142 -

Italy 952 -

Lineages predicted to be under positive selection were identified using the branches-sites test. Residues were identified using the Bayes Empirical Bayes statistic
[43], only those that were statistically significant are displayed. Numbering is based on each respective sequence.

the cagA protein, resulting from functional differences
between different cagA proteins. The intra-population
genetic distances are smaller in human groups as they
migrated east out from Africa [50]. Host-specific differ-
ences may include differences in the immune response,
or differences in the activities of cellular cagA binding
proteins. Codon usage analysis (Table 3) indicates that
the codon adaptation index is similar for different cagA
genes, suggesting that there are no strong differences in
translational selection between cagA genes from different
H.pylori strains, which may indicate no major functional
differences between genes or simply reflect the lack of
translational selection on highly expressed genes

genome-wide [51]. This data helps to inform the sliding
window analysis; translational selection has been shown
to result in false indications of positive selection [52]: this
is not likely to be the case here due to the lack of transla-
tional selection on these genes.

Polymorphisms in the IL-1 gene cluster modify gastric
cancer risk [53]. The induction of IL-8 secretion by the
cag Pal is a major stimulus of the immune response [49].
Thus, differences in host interleukin genotypes may lead
to differences in outcome for disease progression and dif-
ferences in selective pressure on the cagA genes in differ-
ent populations. Amerindians underwent a population
bottleneck during the migration of their ancestors from

8
74
6 |
o %
3
™ 4
3+
2 4
1
0 - &
0 500 1000 1500 2000 2500 3000 3500
Window midpoint (bp)
Figure 3 Sliding window analysis of two cagA genes. Genes from the Venezuela and Peruvian strains (Peru2) were analyzed. Sliding window
analysis of a pairwise cagA alignment was conducted using the DNASP5.0 program [82], using the Nei and Gojobori [83] method of calculating
Ka/Ks. The alignment was constructed as described in Methods. A sliding window of 100 nucleotides, with a step of 10 was used. Gaps were
ignored.
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Table 3 Codon usage analysis of the cagA genes

Gene H. pylori Strain CAl

UK 26695 0.699
Africa (USA) J99 0.697
Sweden HPAGT1 0.695
Perul Shi470 0.712
Peru2 Shi470 0.698
[taly G27 0.693
Germany P12 0.690
Venezuela V225 0.702
Vietnam VietnamHP-No36 0.695
Central China MEL-HP27 0.700
Japan F28 0.700
India 3K 0.691
Austria 15818 0.686
Hong Kong 42G 0.701

The codon adaptation index (CAIl) was calculated as follows. A codon usage
table for the complete H.pylori genome of strain HPAG-1, which comprised
1544 ORFs, was obtained from the Codon Usage Database http://www.kazusa.
or.jp/codon. This was used to calculate the CAI for each individual ORF.

Asia [48]. Phenotypic evidence of this is the universality
of the O blood group amongst amerindians [54], this
may have led to a homogeneity of immune response.
This may have affected the strains capacity to bind non
O human blood antigens; most H.pylori strains are able
to bind the A,B and O antigens via the babA adhesin,
while amerindian strains from South America bind best
to O antigens [55]. It is interesting to note that the east
asian population is also relatively genetically homogenous
[49].

Both commensal and pathogenic bacteria possess
mechanisms for the avoidance of the host immune
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system. Several mechanisms have been shown to be
involved in avoidance of the immune system by H.pylori.
However, cagA+ strains elicit a strengthened immune
response and increased inflammation [56-58]. Inflamma-
tion may be a mechanism to obtain nutrients [59], how-
ever if cagA is evolving to avoid the immune system
while at the same time stimulating it, then this seems
contradictory.

Distribution of gastric cancer worldwide and its
relationship with the strength of positive selection on
cagA
There are great variations in the incidence of gastric can-
cer worldwide, with parts of East Asia and Latin America
showing high incidences, while other parts of the world
such as Africa and parts of Europe showing low incidences
(Table 4). The incidence rates do not correlate with rates
of infection with H.pylori. For instance, there are high
rates of H.pylori associated pathogenicity in Japan, Korea
and parts of China, but low in Thailand and Indonesia
even though they have high infection rates; this is the
‘Asian paradox’ [60]. Instead, incidence appears to be
linked to the frequency and genotype of cagA [61], while
other factors are also likely to play a role such as altitude,
diet and host genotype. In addition, recent work shows
that recent migrations and population movements have
resulted in the introduction of ‘non-native’ H.pylori strains
with different cagA alleles into established human popula-
tions [42,62], this gives an added level of complexity.
Given that amerindian and the ancestral asian cagA
sequences show stronger signs of positive selection, and
that asian and latin american populations can exhibit
high incidences of gastric cancer, this might imply a link
between the strength of positive selection on the cagA

Table 4 Mortality figures from gastric cancer for populations examined in this study

Region Incidence of gastric cancer (per 100000) Incidence of esophageal cancer (per 100000)
Peru 21.2 1.1
Venezuela 104 1.5
Japan 311 5.7
Central China 299 16.7
Hong Kong 29.5 127
Vietnam 189 1.9
Austria 7 26
Germany 7.7 38
India 38 53
[taly 109 19
Sweden 43 22
UK 56 6.6
Africa 4 5

Data were derived from the GLOBOCON project, International Agency for Research on Cancer, World Health Organization and Center for Health Protection,
Department of Health, Government of the Hong Kong Special Administrative Region (Hong Kong).
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gene and the oncogenicity of the gene. The results of the
sliding window analysis, where the cagA region contain-
ing the EPIYA domains is under positive selection, are
consistent with this hypothesis. Further work is required.
If verified, this form of sequence analysis may help iden-
tify at risk populations.

Evolutionary benefit of cagA to H.pylori

The signature of positive selection observed on the cagA
gene indicates that the cagA protein is undergoing adap-
tive evolution in some strains, and is beneficial to the
bacteria. Differences in rates of adaptation imply host
specific differences. The benefit to the bacteria is
mediated via the role of cagA within the pathogenicity
island; the specific role of cagA, and that of the Pal,
remain to be determined. In general, Pals have a role in
promoting survival of bacterial pathogens [63]. The posi-
tive selection observed on the cagA oncogene is unusual
as it is the first case observed of positive selection on an
oncogene in a vertically transmitted pathogen. Positive
selection is a feature of antagonistic coevolution, which
implies harmful effects on the host, but also mutualistic
coevolution, which implies benefits. Positive selection has
been observed on the Epstein Barr Virus - encoded onco-
gene LMP1 [64] and the human papillomavirus type 16
oncogene [65,66], however these are horizontally trans-
mitted pathogens where a balance is expected between
virulence and transmissibility [67]. This may imply that
H.pylori has been horizontally transmitted to a greater
extent than previously recognized.

Virulence is a result of enhanced reproduction of a
pathogen. Early models proposed that a parasite would be
inclined to evolve reduced virulence, given that mortality
of host is a disadvantage. However, this view has been cri-
ticized as relying on group selection [68]. However, verti-
cally inherited pathogens are expected to become less
pathogenic over time; if the pathogen depends on the host
for transmission and the transmission is highly efficient
then it is not in the interests of the pathogen to signifi-
cantly reduce the fitness of the host [69]. H.pylori displays
two features, in addition to the positive selection observed
on cagA, that appear to contradict this paradigm. Firstly,
the acquisition of the cag Pal during speciation from
related non-pathogenic gut helicobacters (Figure 4a), indi-
cates that H.pylori underwent an initial increase in patho-
genicity. Second, the evolution of the more pathogenic
EPIYA-D motifs in the cagA gene in some asian strains
(Figure 4b), indicates that some cagA+ H.pylori has under-
gone a more recent additional increase in pathogenicity.
To some extent, this contradiction could be explained by
the proposal that there is actually a host - beneficial com-
ponent to cagA, or that it has not exerted a sufficiently
deleterious effect on the host. One question that requires
answering is whether those strains that are undergoing a

Page 7 of 10

greater degree of positive selection are becoming more
pathogenic.

In addition, potential beneficial effects of cagA at the
population level via elimination of the elderly has been
suggested [13] (this explanation relies on the theory of
inclusive fitness [70]). This essentially views cagA as a
gene that enhances intrinsic mortality in old individuals,
however it is unclear whether intrinsic mortality in a sub-
group of the population has ever been selected for. While
H.pylori has largely been considered a pathogen, there is
increasing evidence of its positive benefits to human
health. For instance, H.pylori has a beneficial role in pre-
venting esophageal cancer, by reducing acid reflux [71,72],
however in the past this has been unlikely to have pro-
vided much evolutionary benefit to the human population
given that over 90% of patients are over 55 [73], while
before the 20™ century the average life expectancy of
human populations was less than 40. The strongest inverse
correlation between esophageal cancer occurrence and
infection with H.pylori is in East Asia, attributed to the
highly interactive (eastern) form of cagA, which causes
pan- and corpus- predominant gastritis and reduces acid
production [13]. There is also an inverse relationship
between H.pylori and asthma and allergies [74-76], obesity
[77] and infant diarrhea [78]. Asthma and obesity are
modern illnesses, so are unlikely to have played a role in
the evolutionary dynamics of the bacteria.

Ulcers are a modern disease [79], while gastric cancer
has been recorded since ancient times. However, it is
most prevalent in 55 year olds and over, this indicates
that historically it is unlikely to have exerted a strong
selective pressure, given that before the 20 century the
average life expectancy was considerably lower. These
considerations lead to the conclusion that the cagA gene
is either insufficiently deleterious to the human host, that
the cagA protein has a beneficial component to the host,
or that horizontal transmission has been an important
feature of H.pylori in the recent past. There is increasing
evidence that in developing countries, horizontal trans-
mission of H.pylori occurs due to poor sanitary condi-
tions [80,81]. If there is (or has been) significant
horizontal transmission, then there may be population
specific differences in the amount of horizontal transmis-
sion which may have led to differences in selective pres-
sures on the pathogen.

H.pylori has been utilized as a model for infective car-
cinogenesis, and is a model of pathogen evolution. The
results of this work suggest that the cagA gene is insuffi-
ciently deleterious to the human host, that the cagA
protein has a benefit to the host or that horizontal
inheritance has affected the evolutionary dynamics of
the bacteria more than recognized. The results reported
here offer an insight into important aspects of microbe-
host coevolution.
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numerals indicate posterior probabilities, tree (b) as in Figure 1.

H. fennelliae, human
a)
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1.00 , Acquisition
— H. < ——
H. pylori, human of cag PAI
Aj H. heilmannii, human, pig
H. cetorum, dolphin
Helicobacter sp. ‘solnick
9A1-T71’, human
- e 0.99 H. bizzozeronii, dog
1.00 — H. salomonis, dog
——— H. felis, cat, dog, human
|
0.01
EPIYA domains

Africa[USA] ABC

Evolution of EPIYA-D Vietnam ABD

l Hong Kong ABD

Central China ABD
Japan ABBD

Venezuela ABC

Peru1 AC

— Peru2 ABC

Austria ABC

Sweden ABC

UK ABC
India ABCC
Germany ABCC
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.
0.02

Figure 4 Genetic factors leading to an increase in virulence of Helicobacter pylori. a) Small subunit rRNA phylogenetic consensus tree of
bacterial species in the human digestive system related to H.pylori, showing the recent acquisition of cagA; b), the EPIYA domains that are
present in the cagA gene and the evolution of the EPIYA-D domains in the asian lineages. Tree (a) was constructed as described in Methods,
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