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Abstract

identification and quantification using multiplex gPCR.

that infectious doses are very low.

with MIQE handbook.

Background: Thermotolerant Campylobacter jejuni, coli and lari are recognized as leading food-borne pathogens
causing an acute bacterial enteritis worldwide. Due to narrow spectrum of their biochemical activity, it is very
complicated to distinguish between individual species. For reliable risk assessment, proper incidence evaluation

or swift sample analysis regarding individual species, a demand for simple and rapid method for their distinguishing
is reasonable. In this study, we evaluated a reliable and simple approach for their simultaneous detection, species

Results: Species specific primers and hydrolysis probes are directed to hippuricase gene of C. jejuni, serine
hydroxymethyltransferase gene of C. coli and peptidase T gene of C. /ari. Efficiencies of reactions were 90.85% for

C. jejuni, 96.97% for C. coli and 92.89% for C. lari. At 95.00% confidence level and when cut off is set to 38 cycles,
limits of detection are in all cases under 10 genome copies per reaction which is very appreciated since it is known

Conclusions: Proposed assay was positively validated on different food matrices (chicken wing rinses, chicken juice
and homogenized fried chicken strips). No inhibition of PCR reaction occurred. Assay was evaluated in accordance

Keywords: Thermotolerant Campylobacter spp, Multiplex gPCR, Quantification, MIQE

Background
Alimentary infections caused by various food-borne path-
ogens generally pose a threat to public health which has to
be determined and, if possible, prevented or eliminated.

Thermotolerant bacteria belonging to Campylobacter
genus (especially C. jejuni, C. coli, C. lari and marginally
C. upsaliensis) are recognised as leading human food-
borne pathogens causing an acute gastrointestinal dis-
ease called campylobacteriosis. Since 2007, the incidence
of campylobacteriosis in Czech Republic is significantly
higher than incidence of similar well known disease sal-
monellosis [1]. However, this trend is also apparent in all
developed countries worldwide [2].

Digestive tracts of domesticated animals farmed for
meat (especially poultry, pigs, cattle and sheep) and wild
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warm-blooded animals are significant reservoirs of ther-
motolerant Campylobacters. However, many other sources
are also known (e.g. sewage, both drinking and environ-
mental water, raw milk, pets, various kinds of seafood, in-
sects etc.). From all these sources they are able to spread
into a food chain or to an immediate proximity of human
beings and can cause the infection [3-6]. Leaving aside
typical clinical symptoms [3-5,7], another significant prob-
lem is the possibility of developing various post-infectious
complications e.g. reactive arthritis, urticaria or erythema
nodosum. The most serious sequel is the Guillain-Barré
syndrome (GBS) which manifests as an acute polyneurop-
athy affecting peripheral nervous system leading to a typ-
ical ascending paralysis. Especially infection caused by C.
jejuni is a common trigger of this disease and it is esti-
mated that its infection proceeded to about 30% of all
GBS cases [3,4,8].

Although normative methods for detection and enu-
meration of Campylobacter spp. e.g. [9] show relatively
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high degree of specificity, their main disadvantages are ap-
parent. These procedures are based on selective enrich-
ment of desired bacteria, which consequently does not
enable their quantification in original sample, followed by
their isolation from background microflora, biochemical
characterization and phenotypic or serotype identification.
Considering Campylobacters’ special requirements for
optimal growth, the detection according to standardised
methods may take up to 7-10 days. Another problem ap-
pears when identification of individual species is required.
This is caused mainly because of their relatively narrow
spectrum of biochemical reactivity. However, also increas-
ing numbers of nalidixic acid resistant C. jejuni and C. coli
strains, or C. jejuni strains which are not able to hydrolyse
hippuric acid under laboratory conditions (some of the
biochemical tests used for species differentiation) make
this situation more complicated as well [3,10-14]. Another
issue linked with classical microbiological methods, which
should be mentioned, is their inability to detect viable but
non-culturable bacteria (VBNC). Especially C. jejuni is
known for its capability to enter this state when stressed,
starved or physically damaged. Since this phenomenon
has not yet been properly explored, it is assumed that such
bacteria may be able to regenerate and therefore become
infectious again [15,16].

With a regard to already mentioned problems it is evi-
dent that an availability of reliable alternatives for rapid
detection, identification and quantification, especially in
the food and agricultural industry, is undoubtedly an
issue of the day. Over the last several years, various
campylobacter-focused studies implementing real-time
PCR approach, which seems to be suitable to provide
appropriate solution meeting all of the above require-
ments, have been proposed. However, only very few of
them were carried out in a platform of multiplex quan-
titative real-time PCR (qPCR), which enables complex
analysis of a given sample. Main drawbacks of proposed
studies are either that they are not focused on all above-
mentioned main thermotolerant Campylobacters, and/
or enable detection without species identification or
quantification e.g. [17-25], or include undesired pre-
enrichment step [26-28]. Also one of the most interest-
ing studies [28] dealing with this issue suffers from several
shortcomings. Briefly, C. coli identification is based on
amplification of a gene encoding one of the subunits of a
cytolethal distending toxin (cdtA), which is one of its viru-
lence factors. Since cdtA is not housekeeping gene, is not
essential and its predisposition to mutate is higher, some
publications reporting data concerning its mutations and
deletions in campylobacter genome have been already
published and also cdtA negative strains are known as well
[29-33]. Also the achieved detection sensitivity of the assay
(about 38 genome copies per reaction), should be higher
and improved by further optimization.
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Moreover, during our extensive research on other assays
concerned real-time PCR released after 2009, we surpris-
ingly found no publication which would be written in
accordance with so called MIQE handbook (Minimum in-
formation for publication of quantitative real-time PCR
experiments), which we consider unfortunate. MIQE is
very detailed set of guidelines describing the minimum in-
formation which are necessary and should be provided
every time when qPCR experiments are evaluated [34-37].
Although MIQE is not obligatory, there is no doubt that
such checklist helps to assure the quality of obtained re-
sults and for this reason the present study is written in
accordance with it.

Methods

Bacterial strains and culture conditions

Bacterial strains used for experimental analyses in this
study are listed in Table 1. Before further handling, all
Campylobacter strains were incubated in Park and San-
ders enrichment broth (HiMedia, India) for 24—48 h at
42°C under microaerobic atmosphere (5% O,, 10% CO,
and 85% Nj; O,/CO, incubator MCO-18, Sanyo, USA).
Non-campylobacter bacterial strains were aerobically
grown in BHI broth (brain heart infusion; Merck,
Germany) for 24 h at 37°C.

Design of qPCR assay

Material and methods section is only a brief extract from
the very complex MIQE checklist in Additional file 1
where are provided all available details about experimen-
tal design and procedures.

DNA extraction

Genomic DNA from pure bacterial cultures (Table 1) was
extracted by thermal lysis. Concentration and purity of the
DNA were determined spectrophotometrically using Nano-
Photometer™ (Implen, Germany). Only samples whose
Angol Aggo ratio ranged from 1.7 to 2.1 were used for further
analyses. Real genome copy number was determined
using the formula:Genome copies/ul = (Cx Ny x 10~ %)/
(genome length(bp) x M,,), where C is a measured con-
centration of extracted DNA (ng/ul), N is Avogadro’s
constant (6.02 x 10%> molecule/mole) and M,, is molecular
weight of 1 bp which is 660 Da [28].

In silico analyses

Primers and hydrolyses probes selection was based on
previously published studies [18,28]. Although previ-
ously published, selected primers and probes (Table 2)
have not been used together in one reaction and there-
fore it was necessary to perform additional in silico ana-
lyses. Their specificity was tested against 30 bacterial
genomes (Table 3) using both basic nucleotide BLAST at
NCBI (Basic local alignment search tool; National centre
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Table 1 List of experimentally included Campylobacters

and other bacterial species

Species Strain Source Real-time PCR
specificity
C. jejuni subsp. jejuni CCM 6212 Human blood +
C. jejuni subsp. jejuni  NCTC Human faeces +
11168

C. jejuni subsp. jejuni  81-176 Human faeces +

C. jejuni 1K Chicken meat +

C. jejuni 667/C4 Human clinical +
isolate

C jejuni 681/C5 Human clinical +
isolate

C. jejuni 2517 Human clinical +
isolate

C. jejuni 3316 Human clinical +
isolate

C. jejuni 13 Wastewater +
treatment plant

C. jejuni 53G Turkey breasts +

C. coli ccM 6211 Pig +

C. coli 549/6 Wastewater +
treatment plant

C. coli 490/3 Wastewater +
treatment plant

C. coli 253 Human clinical +
isolate

C. coli C254 Human clinical +
isolate

C. coli 226 Human clinical +
isolate

C. coli 2463 Human clinical +
isolate

C. coli 2521 Human clinical +
isolate

C. coli 2530 Human clinical +
isolate

C. coli 52 Chicken breasts +

C. lari CCM 4897  Herring gull, cloacal  +
swab

C. fetus subsp. fetus  CCM 6213 Human blood -

C. upsaliensis ATCC Animal faeces -

43954

Arcobacter butzleri 2013/43 Chicken thigh -

Arcobacter 2012/1 Wastewater -

cryaerophilus treatment plant

Arcobacter skirrowii  2013/34 Cow teat -

Bacillus cereus DBM 3035  Not found -

Bacillus megaterium ~ CCM 2007  Not found -

Bacillus subtilis CCM 1999  Not found -

subsp. spizizenii

Cronobacter ATCC Child’s throat -

sakazakii 29544
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Table 1 List of experimentally included Campylobacters
and other bacterial species (Continued)

Enterobacter cloacae  CCM 1903  Plasma -

Enterococcus faecalis CCM 4224 Urine -

Escherichia coli CCM 4517 Human faeces -
Escherichia coli 485 Raw milk -
Listeria innocua CCM 4030  Cow brain -
Listeria ivanovii CCM 5884 Sheep -
subsp. ivanovii
Listeria CCM 5576  Guinea pig -
monocytogenes mesenteric lymph
node

Listeria ATCC BAA-  Animal tissue -
monocytogenes EGD-e 679
Pseudomonas CCM 1968  Not found -
aeruginosa
Pseudomonas 49 Turkey meat -
aeruginosa
Rhodococcus equi CCM 3429  Lung abscess of foal -
Salmonella enterica ~ CCM 7205 Animal tissue -
subsp. enterica
Staphylococcus CCM 3953 Clinical isolate -
aureus subsp. aureus
Yersinia CNCTC Human faeces -
enterocolytica 7252 Y41/

73
Yersinia ruckeri CCM 6093 Rainbow trout -

ATCC - American Type Culture Collection.

CCM - Czech Collection of Microorganisms.

CNCTC - The Czech National Collection of Type Cultures.

DBM - Department of Biochemistry and Microbiology, ICT Prague.
NCTC - National Collection of Type Cultures.

for biotechnology information) and FastPCR molecular
biology software [38]. Additional more comprehensive
analysis for primer pair specificity checking was con-
ducted using Primer-BLAST tool at NCBI. As a database
query “Genome (chromosome of all organisms)” was
selected and as an organism query was selected “bac-
teria (taxid: 2)”. In order to enable proper optimization
of qPCR protocol for a multiplex platform, necessary de-
termination of primers and probe chemical characteris-
tics was also carried out using FastPCR molecular
biology software [38].

Empirical primers’ specificity screen

In addition to in silico analyses experimental primers’
specificity verification was implemented. Horizontal
agarose-gel electrophoresis and melt curve analysis util-
izing SYBR Green fluorescent dye (2xPower SYBR
Green PCR Master Mix, Applied Biosystems, USA) were
performed. All target and non-target Campylobacter
species listed in Table 1 were used for these analyses.
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Table 2 PCR primers and probes in this assay
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Species Target/ Primer/ DNA sequence 5'—3’ Position within Amplicon Reference
GeneBank ID probe target (bp)
C jejuni  hipO® NC_002163.1  Forward TGCACCAGTGACTATGAATAACGA 809-832 124
Reverse TCCAAAATCCTCACTTGCCATT 911-932 He etal,
2010 [28]
Probe JOE-TTGCAACCTCACTAGCAAAATCCACAGCT-Eclipse 836-864
Ccoli  glyA® AF136494.1  Forward CATATTGTAAAACCAAAGCTTATCGTG 271-297 133
Reverse AGTCCAGCAATGTGTGCAATG 384-404 LaGier et al,
Probe FAM-TAAGCTCCAACTTCATCCGCAATCTCTCTAAATTT- 337-371 20047 18]
Eclipse
C lari pepT< NC_012039.1 Forward TTAGATTGTTGTGAAATAGGCGAGTT 519-544 86
Reverse TGAGCTGATTTGCCTATAAATTCG 581-604 Heetal,
2010* [28]
Probe CY5-TGAAAATTGGAAACGACAGGTG-BHQ 551-570

“hippurate hydrolase.

Pserine hydroxymethyltransferase.
‘peptidase T.

dC internal modification propynyl dC.
*alteration from reference study.

Singleplex qPCR

Choice of probes and primers concentrations for the
first experiments was based on our research on previ-
ously published assays where the most common final
concentrations were 0.40 uM and 0.20 uM for primers
and probes respectively e.g. [22,24,39-42]. Before stand-
ard curves were generated, one experiment was carried
out with all target and non-target Campylobacter species
as well as with other bacterial strains (Table 1) in order
to experimentally verify also specificity of probes. After
the positive verification only three reference target Cam-
pylobacter species (C. jejuni CCM 6212, C. coli CCM
6211 and C. lari CCM 4897) were used for further ex-
periments. Standard curves for singleplex qPCR plat-
form were generated as described in Additional file 1.
All samples were run in duplicates and non-template
(NTC) and positive controls were included.

Multiplex PCR
Multiplex qPCR was evaluated in two phases. In the first
phase, reaction was performed with all components
(primers and probes) with DNA from one strain in a tube
in order to find out whether undesirable inhibition caused
by interaction between components occurs or not. Stand-
ard curves were generated and quantification cycles (Cq),
y-intercepts, slopes, efficiencies (E), standard deviations
(SD), correlation coefficients (R?) and linear ranges were
determined using 7500 Software (Applied Biosystems,
USA, version 2.0.5), Microsoft Office Excel 2007 (Micro-
soft, USA, version 2007) and GenEx software (MultiD
Analyses AB, Sweden, version GenEx 5 Enterprise).

In the second phase, reaction mixture contained all
chemical components as well as mixed DNA sample
from all target Campylobacter strains. Standard curves

were generated and abovementioned parameters deter-
mined using the same approach. In accordance with ob-
tained results the concentrations of individual components
and reaction conditions were optimized until satisfying
values were obtained (Additional file 1).

Data analysis

Output data were analysed with instrument compliant
7500 Software (Applied Biosystems, USA, version 2.0.5),
Microsoft Office Excel 2007 (Microsoft, USA, version
2007) and GenEx software (MultiD Analyses AB, Sweden,
version GenEx 5 Enterprise).

Assay validation on food samples

Sample collection and processing

Three different types of food matrices were chosen for
empirical assay validation — raw chicken wings (local
butchery, Prague, Czech Republic), whole frozen chicken
without giblets (local hypermarket, Prague, Czech Repub-
lic) and fried chicken strips (fast food restaurant, Prague,
Czech Republic). All samples were processed immediately
after the purchase as described in Additional file 1, and
obtained chicken wing rinses, chicken juice and homogen-
ate from fried chicken strips were further examined.

Artificial contamination of food samples

Each sample was divided into four aliquots. One remained
unspiked and the rest was artificially contaminated with
pure culture of individual reference Campylobacter strain
and then serially diluted in order to achieve the range of
approximately 10'-10° CFU/ml. The number of Campylo-
bacter cells used for the spiking was determined on Karmali
agar with Campylobacter selective supplement (sodium
pyruvate, vancomycin, cefoperazone and cycloheximide;
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Table 3 Bacterial strains for in silico specificity screen of
primers and probes

Bacterial strain NCBI genome
accession number
Campylobacter jejuni 81 - 176 NC_008787.1
Campylobacter jejuni 81116 NC_009839.1
Campylobacter jejuni NCTC 11168 NC_002163.1
Campylobacter coli JV20 AEER01000001.1
Campylobacter lari RM2100 NC_012039.1
Campylobacter concisus 13826 NC_009802.1
Campylobacter curvus 525.92 NC_009715.1
Campylobacter fetus subsp. fetus 82-40 NC_008599.1
Campylobacter hominis ATCC BAA-381 NC_009714.1
Arcobacter butzleri RM4018 NC_009850.1
Arcobacter nitrofigilis DSM 7299 NC_014166.1
Bacillus cereus ATCC 10987 NC_003909.8
Bacillus subtilis subsp. subtilis str. 168 NC_000964.3
Cronobacter sakazakii ATCC BAA-894 NC_009778.1
Enterobacter aerogenes KCTC 2190 NC_015663.1
Enterobacter cloacae subsp. cloacae ATCC 13047 NC_014121.1
Escherichia coli ATCC 8739 CP000946.1
Escherichia coli BW2952 NC_012759.1
Helicobacter pylori 26695 NC_000915.1
Listeria monocytogenes 08-5578 NC_013766.1
Listeria monocytogenes EGD-e NC_003210.1
Pseudomonas aeruginosa UCBPP-PA14 NC_008463.1
Salmonella bongori NCTC 12419 NC_015761.1
Salmonella enterica subsp. enterica serovar NC_003197.1
Typhimurium str. LT2
Shigella boydii CDC 3083-94 NC_010658.1
Shigella dysenteriae Sd197 NC_007606.1
Shigella flexneri 2002017 CP001383.1
Shigella sonnei Ss046 NC_007384.1
Staphylococcus aureus subsp. aureus NCTC 8325 NC_007795.1
Yersinia enterocolitica subsp. enterocolitica 8081 NC_008800.1

Oxoid, UK) using a drop plate method [43], by our qPCR
as well as via genome copy number determination in pure
cultures used for spiking [28].

DNA extraction and qPCR
DNA was isolated from 750 pl of each food sample
using commercial PrepSEQ° Spin Sample Preparation
Kit with Protocol (Applied Biosystems, USA) in accord-
ance with manufacturer’s recommendations.

qPCR reaction was performed as described in Additional
file 1. Briefly, standard curves were constructed using 5 pl
of mixed DNA extracted from target Campylobacters.
Used DNA concentrations ranged approximately from 10°
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to 10° genome copies (CFU equivalent) per well for
C. jejuni and from 10° to 10° for C. coli as well as for C.
lari. In the case of food samples 10 pl of DNA were
added into reaction. Simultaneously, all food samples
were examined for presence of Campylobacters using
drop plate method [43].

Results and discussion

qPCR assay

For implementation of multiplex qPCR assay three species
specific target genes (Table 2) were selected based on re-
search of previously published studies e.g. [23,27,28,44-49].
Considering the very short length and high similarity [50]
of campylobacters genomes (from 1.5 to 1.7 Mbp), it was
necessary to carefully choose such primers and probes
which interact exclusively with its target gene, do not form
any secondary structures and also have similar chemical
characteristics in order to allow the co-amplification of
multiple targets in one tube without any competition or
inhibition. Regarding obtained results, C. lari specific
probe, previously designed by another research group [28],
was additionally internally modified with propynyl at two
cytosines (Eastport, Czech Republic) because of its shorter
length and therefore lower melting temperature in com-
parison with the others. Our modification increased its
melting temperature by 5°C and therefore its utilization in
multiplex platform was possible.

Primers’ specificity was experimentally verified with
simple horizontal agarose-gel electrophoresis and melt
curve analysis performed with SYBR Green fluorescent
dye. DNA from target and non-target Campylobacter
species (Table 1) was used. As expected, only specific
melting peaks of amplified products were obtained.
Nonspecific amplicons of different lengths or primer-
dimers did not form. Amplification of non-target DNA
(C. fetus subsp fetus CCM 6213 and C. upsaliensis ATCC
43954) did not occur as well.

Singleplex gPCR

First singleplex qPCR served for specificity screen of hy-
drolysis probes. As a sample DNA isolated from all bacteria
listed in Table 1 was used. Three different combinations of
primers and probes final concentrations in reaction were
tested as follows: 0.40x0.20, 0.30x0.10 and 0.20x0.05 uM
respectively. There were no significant differences between
Cq values, therefore for further experiments in singleplex
platform the combination of concentrations 0.40x0.20 uM
were used. No fluorescent signal was detected when non-
target DNA was used as a sample. When specificity of
probes was positively verified standard curves for target
Campylobacters were generated. Quantification cycles and
efficiencies were 18.54 and 84.56% for C. jejuni, 25.27 and
87.11% for C. coli, 16.19 and 77.93% for C. lari (Table 4)
when 10° genome copies per well used. Because of very
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Table 4 Comparison of results for singleplex qPCR and optimized multiplex qPCR with pure cultures

Platform Singleplex Multiplex

Strain Efficiency (%) Slope y-intercept R? Efficiency (%) Slope y-intercept R?

C. jejuni CCM 6212 84.560 —-3.757 41308 0.999 90.848 —3.565 42227 0.998
C. coli CCM 6211 89.235 -3.610 37.393 1.000 96.973 -3.399 40.040 0.998
C. lari CCM 4897 77.930 —-3.99 40234 0.993 92.388 —3.506 39.548 0.998

R? correlation coefficient.

high Cq value for C. coli when compared with the others,
another combinations of primer and probe concentrations
were tested as follows: 0.40x0.20 to 0.50, 0.50x0.20 to 0.50
and 0.80x0.80 puM. However, no significant differences
were observed. Another in silico analysis showed one non-
complementary base at 3’ end of the forward primer, which
was not issue when used in original study [18] where
only duplex qPCR was evaluated and quantification cycles
ranged between 18.80-23.00 (when 10° genome copies per
well used). Therefore 3° end of original primer was
amended by adding a two bases which increased a stability
and specificity of annealing step (Additional file 1). Our
adjustment caused significant decrease in Cq value to
15.72 (when 10° genome copies per well used) and slight
increase in efficiency as well (89.24%) when concentrations
of primers and probes in reaction were 0.40x0.20 uM
(Table 4). Due to the fact that singleplex platform was
mainly performed in order to verify the functionality of the
reaction, we proceeded directly to the multiplex without
further optimization in order to improve obtained values.

Multiplex qPCR

In the first experiment, all components were present in
reaction mixture at the same concentration as in the sin-
gleplex, but DNA sample in each reaction originated
only from individual species (not mixed sample). Con-
sidering greater number of components when multiplex-
ing, reaction volume was increased from 25 ul to 30 pl.
Results showed that there is no inhibition of the reaction
caused by interaction between components. Serial dilu-
tions of DNA were in the range of 10°-10” genome cop-
ies (CFU equivalents) per well. Quantification cycles and
efficiencies were 23.80 and 91.35% for C. jejuni, 23.41
and 95.23% for C. coli and 21.53 and 92.12% for C. lari
when 10° genome copies per well used (more details in
Additional file 1).

In second phase multiplex with mixed DNA sample
was evaluated. First experiment was carried out under
the same conditions as the singleplex. Serial dilutions of
mixed DNA were in the range of 10°-10” genome copies
of each strain per well. Although Cq values and efficien-
cies for C. coli and C. lari were comparable with previ-
ous multiplex results (DNA from single strain), it was
unambiguous that strong inhibition of amplification oc-
curred in the case of C. jejuni because of a complete

disappearance of its PCR product. Therefore conven-
tional multiplex PCR (all three pairs of primers and
three probes) with end point horizontal agarose-gel elec-
trophoresis was conducted with two possible combina-
tions of DNA present in sample (C. jejunixC. coli; C.
jejunixC. lari) in order to determine in which case the
problem occurs. Based on results it was found that when
all components are present in reaction with DNA sam-
ple mixed of C. jejuni and C. lari the amplification of C.
jejuni target is affected and the typical PCR product does
not form. Having regard to the fact that there was no in-
hibition due to competition for other reaction compo-
nents when multiplex with DNA sample from each
strain individually was performed, this indicated that
there was some interaction between C. jejuni and C. lari
DNA even though the trend of C. lari reaction was
not affected at all. Considering this fact, another op-
timization was necessary and various concentrations of
C. jejuni and C. lari specific primers and probes were
tested (results not shown).

Fully optimized reaction mixture consisted of 0.80 uM
C. jejuni, 040 uM C. coli and 0.05 uM C. lari primers
and 0.20 pM of each probe. Eight points of ten-fold ser-
ial dilutions in the range of 10°-10” genome copies of
each strain per well were used to generate standard
curves. Values of quantification cycles and efficiencies
are 22.99 and 90.85% for C. jejuni, 20.77 and 96.97% for
C. coli, 20.04 and 91.05% for C. lari, when 10° genome
copies per well used (Table 4). All reactions were linear
over seven orders of magnitude in the range 10'-10
with potential to cover wider range in higher orders.
Detection limits of this assay were determined to be
between 6.62-16.10 genome copies/well for C. jejuni,
5.13-6.30 genome copies/well for C. coli and 4.87-5.23
genome copies/well for C. lari. All other parameters are
provided in Additional file 1.

Food sample analyses

For empirical assay evaluation on food samples, three
different food matrices which were likely to be naturally
contaminated with Campylobacter species were exam-
ined (chicken wing rinses, chicken juice and homogen-
ate prepared from fried chicken strips). Sample aliquots
were artificially contaminated with individual target
Campylobacters. Unspiked samples were tested for natural
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Table 5 Comparison of food sample analyses results obtained by plate counting and qPCR

Food sample

Wing rinse A Wing rinse B Wing rinse C Chicken juice Fried strips homogenate
CFU/mlI 10" 10®> gPCR 10" 10> gPCR 10" 10> gPCR 10" 10° qPCR 10" 10> gPCR
C. jejuni - - - - - - - - - - - 7Ix10° £ 16x10° - - -
C. coli - + - + o+ - - + o+ - + - + o+ -
C lari + + - - + - + + - + + - - + -

- negative quantification.
+ positive quantification.

*quantification was not possible, because cell numbers were below quantification limit of gPCR.

contamination as well. Plate counting method [43] and
proposed qPCR assay were simultaneously compared.

Using qPCR, quantification of target Campylobacters
was possible in all tested food samples even when the
highest dilutions were used for spiking. Quantification by
plate counting was always possible in the range of 10°-
10° CFU/ml however, for some target Campylobacters
failed when higher dilutions were used for spiking
(Table 5). Quantification of C. jejuni by plate counting, re-
gardless of the sample analysed, always failed with the di-
lution corresponding to 10> CFU/ml and higher in which
case no growth on the plates was observed even after pro-
longed incubation for 72 hours. Therefore this concentra-
tion seems to be the detection limit for this specie when
the plate counting is used. All the unspiked food samples
were determined to be Campylobacter free by plate count-
ing. On the contrary, the unspiked chicken juice was de-
termined to be naturally contaminated by C. jejuni using
qPCR (Table 5). Also one of the unspiked chicken rinses
was reliably determined to be naturally contaminated by
C. coli however, its numbers were below quantification
limit. As mentioned above, there is a possibility that food
samples or Campylobacter cultures used for spiking con-
tained certain numbers of dead or VBNC cells, which
were detected and quantified with qPCR but did not grow
on plates. However, considering fact that cultures were
fresh and under no stress, it is highly unlikely that number
of such cells would be significant.

Conclusions

In conclusion, we provided a reliable method for detec-
tion, identification and quantification of three most abun-
dant thermotolerant Campylobacters. The main advantage
of this approach over normative methods for their charac-
terization is a possibility to exclude the pre-enrichment
step. Exclusion of this part dramatically reduces the time
required for analysis. Also the possibility to identify all
three species at once is appreciated, since cases of co-
contamination and co-infection with more than one Cam-
pylobacter specie are relatively common [51-53]. Also this
publication is written in accordance with the MIQE hand-
book [35,36] which introduces a very good way to estab-
lish a consensus on how best to perform and interpret

qPCR experiments in order to facilitate cooperation be-
tween laboratories, comparability and reproducibility of
obtained results, and generally serves for higher stan-
dardization of real-time PCR experiments.
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