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Host, pathogen and environment: 
a bacterial gbpA gene expression study 
in response to magnesium environment 
and presence of prawn carapace 
and commercial chitin
Suma Tiruvayipati1 and Subha Bhassu1,2*

Abstract 

Background:  Vibrio parahaemolyticus is a Gram-negative halophilic bacterium which is found largely in estuarine and 
coastal waters. The bacteria has been a main focus in gastro-intestinal infections caused primarily due to the con-
sumption of contaminated seafood. It was shown to survive in magnesium concentrations as high as 300 mM which 
are toxic to various other micro-organisms. Several genes of V. parahaemolyticus were studied, among which gbpA 
(N-acetyl glucosamine binding protein) was reported in Vibrio cholerae.

Methods:  The current study investigates the V. parahaemolyticus gbpA gene expression at different concentra-
tions of magnesium sulfate heptahydrate (MgSO4·7H2O, chosen as the magnesium environment), in the presence 
of the host’s (prawn) carapace and the mimicked carapace [commercial chitin flakes (Sigma)]. The concentrations of 
MgSO4·7H2O utilized were approximately 0, 1, 75, 137, 225 and 300 mM. These were selected based upon the survival 
conditions required by prawn and bacteria, respectively. 0.05 gm/3 ml of carapace (by dry weight) and commer-
cial chitin flakes were used in the experiments. Bacterial count was performed for the biological triplicates for the 3 
experimental setups. The genome of Vibrio parahaemolyticus PCV08-7 (VPPCV08-7) was used as a reference, based on 
whose translated gbpA gene the probable protein-chemical interactions were determined on the STITCH database.

Results:  The GbpA protein was shown to interact with chitin on the STITCH database. In our experiments, the gbpA 
showed lower gene expression levels at different MgSO4·7H2O concentrations in the presence of chitin and carapace, 
than with the presence of only MgSO4•7H2O. In addition, the bacterial count for various concentrations of magnesium 
used, revealed a distinct decrease in bacterial count within and among each of the three experimental setups.

Conclusion:  In the presence of only magnesium, an increase in the gbpA expression with neither chitin nor carapace 
and vice versa supported by the results from the bacterial counts could help further studies to prove that the moult-
ing phase of prawns may trigger increased expression of the V. parahaemolyticus gbpA gene.
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Background
Vibrio parahaemolyticus is a curved, rod-shaped Gram-
negative bacterium. It is non-spore forming and has a 

high motility rate due to its polar flagellum. Through a 
mechanism known as swarming, these microorganisms 
migrate across semi-solid surfaces [1] with the help of 
their lateral flagella. Across the world, inshore marine 
waters are densely populated with V. parahaemolyticus 
which is particularly common in estuarine marine water. 
Research has shown that V. parahaemolyticus is seasonal 
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[2] and thrives well in warmer conditions. For example, 
the bacteria could not be detected during the winter 
(November–March) in Chesapeake Bay seawater [2]. On 
the other hand, V. parahaemolyticus begins to multiply 
when there is an increase in temperature [2]. This could 
be a result of the microorganism somehow being reintro-
duced into the sea water or its emergence from marine 
sediments in which it could have survived throughout the 
winter.

Temperatures ranging from 35 to 39 °C [3] are the opti-
mal conditions for the growth of V. parahaemolyticus. 
It has a generation time of less than 20 min, although it 
can double in as little as 5 min [4] under certain condi-
tions. As a result, V. parahaemolyticus is most commonly 
observed in the warm season as a mesophilic bacterium 
causing food-borne outbreaks which peak in summer [5, 
6], the levels of V. parahaemolyticus found in freshly har-
vested seafood tend to be rather lower than the predicted 
infection doses [7]. However, the ability of the bacterium 
to multiply very rapidly at suitable temperatures means 
that its presence in food is often enough to cause disease.

Vibrio parahaemolyticus has one very important 
requirement to live and multiply that is salinity. V. para-
haemolyticus typically encounters salinity concentrations 
in the marine environment ranging between 0.8 and 3 % 
[8]. It requires optimal salinity levels between 1 and 3 %, 
but laboratory studies have shown that V. parahaemolyti-
cus can thrive in between 0.5 and 10 % sodium chloride 
concentrations.

Vibrio parahaemolyticus isolates were found to survive 
even in 300  mM magnesium (e.g. in severely polluted 
coastal waters in some parts of India)—a level consid-
ered toxic to many other microorganisms [9]. It’s sur-
vival under such wide-ranging conditions may be due to 
its ability to utilize magnesium. A 5.5 kb plasmid is said 
to carry the genes responsible for the bacterium’s high 
resistance to high magnesium concentrations [9]. Injured 
or thermally treated V. parahaemolyticus cells display 
an increased uptake of magnesium suggesting a possible 
increased requirement for magnesium not only for the 
stability and repair [10] of the ribosome, but also of the 
cell membrane. To sum up, V. parahaemolyticus’s ability 
to survive in high concentrations of magnesium or other 
metal ions allows it to out-compete other basic seawater 
flora in terms of survival and growth in such drastic envi-
ronmental conditions.

The giant freshwater prawn Macrobrachium rosenber-
gii is a freshwater aquatic organism. The optimal tem-
perature range for Macrobrachium rosenbergii larvae to 
survive is 28  to 31  °C. Observations have shown that a 
salinity of <10 parts per thousand (ppt) is ideal for fresh-
water prawn hatcheries (http://www.fao.org/docrep/005/
y4100e/y4100e04.htm#P193_35649). While calcium is 

important for the formation of the prawn exoskeleton 
(http://www.thefishsite.com/articles/464/moulting-and-
behaviour-changes-in-freshwater-prawn), the crucial 
element for this species is a favourable condition for the 
survival of its larvae.

Various reports have suggested that magnesium is an 
important component of the environment for prawn 
survival particularly for juvenile prawns [11]. A recent 
article [12] describing the effects of salinity through the 
use of artificial sea water clearly explains the importance 
of magnesium in the survival amounts of post larvae. 
Taking an example, the effect of an environment that is 
acidic due to the presence of aluminium could not hin-
der the survival stages of post larvae due to the presence 
of increased levels of magnesium ions (Mg2+) [13]. The 
characteristics of water which are good for prawn hatch-
eries are said to be 10–27 parts per million (ppm) of mag-
nesium in fresh water, 1250–1345  ppm  Mg in seawater 
and 460–540  ppm  Mg in brackish water (http://www.
fao.org/docrep/005/y4100e/y4100e04.htm#P193_35649). 
These features and conditions show how important mag-
nesium ion is for the survival of larvae which undergo a 
very critical moulting stage before reaching the post-lar-
val stage.

Most Vibrio species have adapted to aquatic organisms 
and caused severe infections on consumption by humans. 
V. parahaemolyticus has several virulence, pathogenicity 
and antibiotic resistance factors which show that it can 
survive well in aquatic organisms, especially the giant 
freshwater prawn, M. rosenbergii [14].

Detailed studies of the growth conditions of M. rosen-
bergii in the environment can help us to correlate the 
respective levels of adaptability of V. parahaemolyticus 
to M. rosenbergii. Studies have shown that M. rosen-
bergii can survive in a range of different media com-
positions with varying proportions of NaCl, KCl and 
MgCl2 + MgSO4 [5]. However, the fertilization envelope 
of shrimp eggs was observed to grow thin when there is 
a depletion of calcium and magnesium [15]. Early-stage 
embryos were shown to require optimal levels of medium 
containing MgCl2  +  MgSO4 for their proper develop-
ment [16].

The role of magnesium ion in the normal hatching rate 
of larvae has not been shown to be significant [16]. How-
ever, the importance of magnesium in survival mecha-
nisms was observed [12] as explained earlier. Perhaps 
the most interesting similarity of V. parahaemolyticus 
to prawn is its unusually good tolerance levels to high 
concentrations of magnesium and its growth capability 
under iron-limiting conditions—both of which are quite 
a match to the conditions of prawn larvae survival.

In addition, another important factor is the N-acetyl 
glucosamine binding protein (GbpA) reported in Vibrio 

http://www.fao.org/docrep/005/y4100e/y4100e04.htm%23P193_35649
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cholerae [17, 18] to have the property to bind to epithe-
lial cell surfaces and chitin of the host surface. An in vitro 
study in 1996 presented how cell associated N-acetyl 
D-glucosamine specific haemagglutinin of Vibrio chol-
erae O1 showed adhesive characteristics to the rabbit 
intestinal epithelial cells [19]. In 2008, gbpA gene of V. 
cholerae was studied in specific with mucin for its co-
operative levels of gene expression ultimately giving way 
to intestinal colonization and infection by the bacterium 
[20]. In infant mouse models it was observed that a dele-
tion in the adhesion gbpA portrayed a deficit in the intes-
tinal colonization [21, 22]. The importance of gbpA in 
the intestinal colonization of V. cholerae was reported by 
a study along with several other colonizing factors [23]. 
Our study aims at checking the levels of bacterial gbpA 
gene expression in the presence of the host carapace and 
commercial chitin at different magnesium environment 
concentrations. This study could help researchers to 
consider environment as an indispensable factor in host-
pathogen studies, not only in seafood industries, but even 
in omics studies.

Methods
Protein‑chemical interactions
The STITCH v1.9 [24] database for protein-chemical 
interactions was used to check the interactions of the 
gbpA gene of the VPPCV08-7 [25] with other proteins 
molecules on the database.

Vibrio parahaemolyticus PCV08‑7 culture conditions
The inocula were first prepared by using the VPPCV08-7 
glycerol stocks [25]. The glycerol stock was used to revive 
the bacteria in 5 ml Luria-bertani broth (LB broth) with 
2  % NaCl as a primary culture incubated overnight at 
37 °C in a shaking incubator at 220 rpm. 30 ml LB broth 
with 2  % NaCl was then inoculated with 5  % primary 
culture containing cells at the mid-exponential phase. 
This inocula was further used for all the 3 experimental 
setups. Eighteen, 10  ml falcon tubes (Greiner bio-one, 
North America) were used under aseptic conditions 
to pour LB broth with 2  % NaCl in each tube and then 
inoculated with 5 % of the prepared inocula to make up 
to 6 ml of the inoculated culture. These 18 culture tubes 
contained three sets of experiments as follows with six 
concentrations of magnesium sulphate hepta hydrate 
(MgSO4·7H2O) (chosen as the magnesium environ-
ment in the study) used (stock prepared was 500  mM). 
These concentrations of MgSO4·7H2O correspond to 
0 ppm (0 mM), 300 ppm (1 mM), 18,500 ppm (75 mM), 
34,000  ppm (137  mM), 55,500  ppm (225  mM) and 
73,941 ppm (300 mM), respectively per set. The first set 
consisted of these six concentrations of MgSO4·7H2O. 
0.05 g/3 ml by dry weight of carapace of the prawn was 

added per tube to all six concentrations of the second set, 
while 0.05 g/3 ml of commercial chitin flakes (chitin from 
shrimp shells, SIGMA) was added to the third set. All the 
18 experiments were carried out in triplicates at 37 °C in 
a shaking incubator at 220 rpm. For the isolation of total 
RNA all the 18 bacterial cultures (3 ml) were harvested at 
the 16th hour (for maximal turbidity/growth).

VPPCV08‑7 bacterial plate count
One milliliter each of all the 18 experiments in triplicates 
was centrifuged at 8000 rpm at 4 °C for 2 min and the pel-
let was dissolved in 750 μl of fresh LB broth (2 % NaCl) 
and 5 μl of each was spread plated on thiosulfate-citrate-
bile-sucrose (Difco, France) agar plates. After incubation 
at 37 °C for 24 h, the bacterial plate count was performed 
(Additional file 1: Figure S1).

Total RNA isolation and reverse transcription (RT) PCR
Total RNA was isolated from the triplicates of the three 
experimental setups above using a Promega Total RNA 
isolation kit and converted to cDNA using a reverse tran-
scription PCR protocol (Additional file 1: Table S1). 4 µl 
of each isolated RNA sample from each of the triplicates 
was added to 1  µl Random primer to make a reaction 
mixture of 5 µl for an initial incubation at 70  °C/5 min, 
followed by 4  °C/5  min in a Biorad PCR machine. A 
reverse transcription mix of 15 µl each (6.1 µl Nuclease 
free water, 4 µl of 5× reaction buffer, 2.4 µl MgCl2, 1 µl 
dNTPs, 0.5  µl ribonuclease inhibitor and 1  μl reverse 
transcriptase) was added to the former mixture for 
annealing at 25 °C/5 min, extension at 42 °C/60 min, and 
heat inactivation of reverse transcriptase at 70 °C/15 min.

Quantitative Real Time (qRT)—PCR
We selected the gbpA gene as identified from the STITCH 
v1.9 protein-chemical interactions for qRT-PCR to check 
the effects of MgSO4. 7H2O as the environment in the 
absence and presence of commercial chitin and carapace. 
The bacterial house-keeping gene RNA helicase (deaD) 
was selected as the internal control gene for qRT-PCR to 
later normalize the amounts of RNA. The tools used for 
primer designing were AmliFX, DNA star [26], Primer3 
(http://www.bioinformatics.nl/cgi-bin/primer3plus/
primer3plus.cgi/) and NCBI primer Blast (http://www.
ncbi.nlm.nih.gov/tools/primer-blast/). The primers were 
specifically designed considering the domain regions 
of deaD (product size 181 bp corresponds to DeaD-box 
helicases) and gbpA (product size 190 bp corresponds to 
chitin binding domain) as follows: deaD forward primer 
5′-GTGCACACGTTGTTGTTGGT-3′, reverse primer 
5′-AGAACGCGTTGTGCTGATTC-3′ and gbpA for-
ward primer 5′-CTCGTTCGCTCTCAACCCTT-3′, 
reverse primer 5′-CACAGGGTCGTCACCATCAA-3′. 

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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The qRT-PCR reaction (20  μl) consisted of 10  µl Power 
SYBR green PCR master mix, 0.6  µl forward primer, 
0.6  µl reverse primer, 1  µl DNA template and 7.8  µl 
ultrapure water. The default thermal cycling conditions 
were used for the run with stage 1 at 50 °C/2 min, stage 2 
at 95 °C/10 min for one cycle, stage 3 with 40 repetitions 
at 95  °C/15  s, followed by 60° C/1  min, carried out by 
using the Applied Biosystems 7500 Real Time PCR sys-
tem. Similar qRT-PCR profile was applied to the internal 
control gene, deaD. The gene expression levels of the 3 
experimental setups were analysed by using the compara-
tive 2−ΔΔCT method {2[−Delta Delta C(T)] Method} [27] 
known as Livak method.

Results and discussion
Bioinformatic analysis of host‑pathogen genes
Previous studies have shown that the gene gbpA of V. 
cholerae interacts with the intestinal epithelial chitinous 
membrane or host surfaces [18, 20]. As Macrobrachium 
rosenbergii is known to be infected by Vibrio parahaemo-
lyticus, we selected this gene to check for interactions 
with other proteins or chemicals as bacterial chitin-
binding proteins were previously shown to be virulent 
[28]. The protein-chemical interactions of Vibrio para-
haemolyticus gbpA revealed relationships with a multi-
drug resistance protein D (VPA1016), AraC/XylS family 
transcriptional regulator (VPA1017), chitinase (VP2338), 
putative chitinase A (VPA1177), spindolin-related pro-
tein (VPA0092), chitodextrinase (VPA0832), putative 
collagenase (VPA0714), prt collagenase, Chi1–chitinase, 
and chitin. Fig.  1 obtained from STITCH 3, shows the 
predicted interaction with chitin, an epithelial cell sur-
face component and a major component of the prawn 
shell. This result helped us select chitin for our study in 
accordance with the earlier explained gbpA gene interac-
tion with the epithelial chitinous membrane [20].

Vibrio parahaemolyticus gbpA gene expression study 
in response to magnesium and carapace/commercial chitin
The various concentrations of MgSO4·7H2O were 
selected based on the previous literature which stud-
ied the levels of magnesium required for the survival of 
prawn [12] as well as for V. parahaemolyticus [9]. The 
lowest and the highest ppm values for the concentra-
tions of MgSO4·7H2O were selected based on the same 
as previously, no such research was reported on this 
aspect of V. parahaemolyticus gene expression study. 
The relative gbpA gene expression levels were calcu-
lated using the livak method [27]. The house-keeping 
gene deaD expression was used for qPCR normaliza-
tion with the target gene being gbpA. With increasing 
concentrations of MgSO4·7H2O a uniform increase in 
the gbpA gene expression was observed (Fig. 2). In the 

presence of commercial chitin, the level of gbpA gene 
expression was high at 0  mM MgSO4·7H2O, but then 
a gradual increase in gene expression was observed 
with increase in concentration of MgSO4·7H2O. Lastly, 
in the presence of carapace the levels of gbpA gene 
expression increased at 0 and 1 mM MgSO4·7H2O after 
which the gene expression levels dropped greatly at the 
75 mM MgSO4·7H2O followed by a steady increase and 
a final drop at the 300 mM MgSO4·7H2O. We therefore 
infer that in all three experimental setups similar lev-
els of gbpA gene expression were observed at 0  ppm 
MgSO4·7H2O with a comparatively slightly lower gene 
expression in the presence of chitin. This explains that 
the bacterial gbpA expression could have a miniature 
dependency on the presence of carapace or chitin in the 
environment, but this is subject to further validation 
with fluctuating the amount of carapace/chitin used in 
future studies. As our research is primarily to check the 
effect of an external environment, we were successfully 
able to identify that the increase in gbpA gene expres-
sion directly depends on the increasing concentrations 
of MgSO4·7H2O. Our result backed by further research 
could support the V. parahaemolyticus survival in high 
magnesium concentrations as well as its affinity to 0.8 to 
3 % salinity range [8, 9].

The results of the three experiments were quite sig-
nificant in the V. parahaemolyticus culture treated 
with only MgSO4·7H2O with a P value of 0.04, with 
both MgSO4·7H2O and chitin present with a P-value of 
0.000441 and with MgSO4·7H2O and carapace present 
with a P-value of 0.0152 (Additional file 1: Table S2–S4). 
Concentrations of 300  mM (P-value  =  0.02744) and 
75 mM (P-value = 0.00132) produced highly significant 
values in the samples treated with MgSO4·7H2O and 
MgSO4·7H2O with chitin, respectively (Additional file 1: 
Table S5).

Vibrio parahaemolyticus bacterial count in response 
to magnesium & carapace/commercial chitin
The colony forming units (CFU) per millilitre (ml) 
of VPPCV08-7 in the presence of MgSO4·7H2O, 
MgSO4·7H2O with chitin, and MgSO4·7H2O with 
carapace, showed a significant decrease in all three 
experimental setups with increase in concentrations of 
MgSO4·7H2O (Table  1). This data supports that though 
the V. parahaemolyticus growth is affected due to the 
presence of magnesium and chitin/carapace. The increase 
in gbpA gene expression is not hindered with increasing 
concentrations of magnesium irrespective of less num-
ber of bacterial colonies. Figure 3 shows a decline in the 
number of CFU/ml in all the three experimental setups 
supporting the literature regarding V. parahaemolyti-
cus survival with increase in magnesium concentrations. 
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Meanwhile the presence of carapace/commercial chitin 
also does effect the growth of the bacterium as observed 
clearly from the heat map too (Fig. 4).  

Conclusion
Our bioinformatics analysis carried out on the gbpA gene 
indicated likely interactions with chitin, an important 
component of the outer carapace of the prawn M. rosen-
bergii. The in vitro experiment on the gbpA expression of 
V. parahaemolyticus, with the M. rosenbergii components 
(mimicked commercial chitin and original prawn carapace) 
present in an external environment containing magnesium, 
meanwhile showed that gbpA gene expression was regu-
lated. The results revealed comparatively equalized levels of 

gbpA gene expression in the absence of magnesium (0 mM) 
in the three experimental setups. On the other hand, signif-
icant changes in the gbpA gene expression were observed 
in the three experimental setups as explained under the 
results and discussion. All this points up to the importance 
of the environment containing magnesium in regulating 
the gene expression of bacterial gbpA.

The patterns of the gene expression of gbpA we 
observed could help increase our understanding of 
both the role of magnesium as the environment and of 
the host component chitin as a trigger for the patho-
genic gene to respond. This work further provides 
pioneer information that the gbpA gene expression 
of V. parahaemolyticus pathogen may increase during 

Fig. 1  STITCH 3 protein-chemical interactions of gbpA protein of Vibrio parahaemolyticus. Protein–chemical interaction tests of gbpA (N-acetyl-
glucosamine-binding protein A) on the STITCH 3 database show interactions primarily with genes of Vibrio parahaemolyticus (VPA1016-multidrug 
resistance protein D, VPA1017-AraC/XylS family transcriptional regulator, VP2338-chitinase, VPA1177-putative chitinase A, VPA0092-spindolin-related 
protein, VPA0832-chitodextrinase, VPA0714-putative collagenase, prt-collagenase, Chi1–chitinase, and chitin)  (Source: Tiruvayipati S, Bhassu S: Host, 
pathogen and the environment: the case of Macrobrachium rosenbergii, Vibrio parahaemolyticus and magnesium. Gut Pathog 2016, 8:15)
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the moulting phase of the prawn, when the mature 
prawn carapace is shed (with higher availability of 
epithelial chitin in the environment) and a new cara-
pace emerges, initially as a thin chitinous layer. Due 
to higher gbpA expression at this stage the chances of 
the binding ability of gbpA to chitin could be higher. 

This hypothesis generated from our study can only be 
proved with further research targeting the moulting 
phase of prawn [29].

Our results give a new perspective to the importance 
of host-pathogen-environment experiments both for 
the aquatic industries and for microbiologists dealing 

Fig. 2  Graph representing relative gbpA gene expression in terms of 2−ΔΔCT values in the presence of different MgSO4·7H2O concentrations, 
MgSO4·7H2O with commercial chitin and MgSO4·7H2O with carapace

Table 1  Vibrio parahaemolyticus mean colony forming units (CFU) per millilitre (ml) from the three experimental bacte-
rial culture setups MgSO4·7H2O (NONE), MgSO4·7H2O with commercial chitin [CHITIN (0.05gm/3 ml)], and MgSO4·7H2O 
with carapace [CARAPACE (0.05gm/3 ml)]

The table shows colony-forming units at different MgSO4·7H2O concentrations (in ppm) of 0, 300, 18,500, 34,000, 55,000 and 73,941 ppm

Concentrations of MgSO4·7H2O NONE (CFU/ml) CHITIN (0.05gm/3 ml) (CFU/ml) CARAPACE (0.05gm/3 ml) (CFU/ml)

0 ppm (0 mM) 148.850 × 103 74.033 × 103 137.95 × 103

300 ppm (1 mM) 117.6 × 103 43.33 × 103 103.9 × 103

18,500 ppm (75 mM) 87.8 × 103 17.93 × 103 90.7 × 103

34,000 ppm (137 mM) 60 × 103 15.96 × 103 79.05 × 103

55,500 ppm (225 mM) 57.9 × 103 5.63 × 103 24 × 103

73,941 ppm (300 mM) 56.55 × 103 3.7 × 103 14.95 × 103
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with host-pathogen research. Further, our principle 
findings could provide a base for future research to use 
several other pathogen-related genes to investigate the 

interactions between gbpA and chitin (pathogen and 
host) with magnesium as an important component in the 
environment through proteomics research.

Fig. 3  Graphical representation of Vibrio parahaemolyticus PCV08-7 CFU/ml in the three experimental setups: in the presence of different 
MgSO4·7H2O concentrations, MgSO4·7H2O with commercial chitin and MgSO4·7H2O with carapace

Fig. 4  Heat map of decreasing order of Vibrio parahaemolyticus PCV08-7 CFU/ml in the three experimental setups at different MgSO4·7H2O concen-
trations
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