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Anaerobic adaptation of Mycobacterium 
avium subspecies paratuberculosis in vitro: 
similarities to M. tuberculosis and differential 
susceptibility to antibiotics
Nicole Parrish1*  , Aravinda Vadlamudi1 and Neil Goldberg2

Abstract 

Background:  Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne’s disease in 
ruminants and is associated with Crohn’s disease (CD) in humans, although the latter remains controversial. In this 
study, we investigated the ability of MAP to adapt to anaerobic growth using the “Wayne” model of non-replicating 
persistence (NRP) developed for M. tuberculosis.

Results:  All strains adapted to anaerobiosis over time in a manner similar to that seen with MTB. Susceptibility to 12 
antibiotics varied widely between strains under aerobic conditions. Under anaerobic conditions, no drugs caused 
significant growth inhibition (>0.5 log) except metronidazole, resulting in an average decrease of ~2 logs.

Conclusions:  These results demonstrate that MAP is capable of adaptation to NRP similar to that observed for MTB 
with differential susceptibility to antibiotics under aerobic versus anaerobic conditions. Such findings have significant 
implications for our understanding of the pathogenesis of MAP in vivo and the treatment of CD should this organism 
be established as the causative agent.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Crohn’s disease (CD) is an incurable, chronic inflamma-
tory disorder of the gastrointestinal tract [1]. Although 
the etiology of CD is unknown, the clinical findings in 
humans resemble those of Johne’s disease (JD) in cat-
tle, caused by Mycobacterium avium subspecies para-
tuberculosis (MAP) [1]. In cattle, MAP was established 
as the etiologic agent of JD by successful demonstration 
of Koch’s postulates [2]. In humans, MAP as the causa-
tive agent of CD has been met with both support and 
skepticism despite the similarities to JD [3]. Supporting 
evidence for MAP in the etiology of CD may be found 
in multiple studies in which the organism has either 
been cultured from intestinal tissues, breast milk, and 
the blood of CD patients or MAP DNA/RNA has been 

detected in patient samples versus healthy controls [4–
10]. Exposure to MAP may be more widespread than 
is recognized since viable organism has been found in 
potable water, commercial milk, and other dairy prod-
ucts, including those having undergone pasteurization 
sufficient to kill common contaminating organisms [4, 8, 
11–13]. MAP can also persist in the environment for long 
periods of time in the absence of a host as evidenced by 
pastures which remain infective for months after removal 
of all infected animals [14, 15]. Unfortunately, the time 
required for clearance of MAP in the environment is 
largely unknown.

Skepticism of MAP as the causative agent of CD stems 
from several lines of evidence which support a strong 
role for immune dysregulation and highlight failure to 
achieve a cure with antimicrobial therapy [1, 16]. Antimi-
crobial regimens for treatment of CD have included anti-
biotics such as rifaximin (RFX), ciprofloxacin (CIP), and 
metronidazole (MET) given separately or in combination 
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for a period of one to several months [18–22]. Other tri-
als have used clarithromycin, clofazimine or rifabutin 
[23]. Efficacy is variable and relapse a common occur-
rence once therapy is stopped. Questions surrounding 
the cause of this relapse remain unanswered. Some inves-
tigators have suggested the possibility that MAP may be 
capable of entering a dormant or non-cultivable state in 
which reversion to vegetative growth is possible when 
more favorable environmental conditions are present 
[14]. Dormancy (also known as ‘latency’) is well docu-
mented with respect to other mycobacterial species such 
as M. tuberculosis and M. bovis BCG (BCG) [24–26]. 
These related species possess the ability to transition 
to a non-replicating ‘latent’ or persistent state in which 
metabolism is reduced to an extremely low basal level 
as part of an adaptive response to anaerobiosis [25, 26]. 
These ‘latently adapted’ organisms can persist for years or 
decades until reactivation occurs due to a variety of fac-
tors including waning of immunosurveillance. Recently, 
some investigators noted that although most humans 
appear to be susceptible to MAP infection, few develop 
clinical signs and symptoms immediately following expo-
sure. The authors postulate that in these individuals a 
‘latent’ rather than an ‘active’ infection is established; an 
infection which is controlled rather than eliminated by 
the immune response [27]. Transition of MAP from a 
vegetative to a ‘latent’ state may require environmental 
signals, such as occurs with M. tuberculosis in response 
to decreasing oxygen concentrations. Once adapted to 
the ‘latent’ or non-replicating persistent state, MAP may 
exhibit differential susceptibility to various antibiotics as 
has been documented with M. tuberculosis. In culture, 
latently adapted M. tuberculosis is not susceptible to the 
majority of commonly used first-line antimycobacte-
rial drugs; suggesting that this population of bacilli can-
not be eliminated by conventional antimicrobial therapy 
which relies on actively growing bacilli to be effective. 
Only metronidazole (MET), active in anaerobic but not 
aerobic conditions, significantly inhibits this population 
of M. tuberculosis in vitro [25, 28]. If MAP were capable 
of anaerobic adaptation to a non-replicating persistent 
state as seen in M. tuberculosis and BCG, then most anti-
mycobacterial drug regimens would be insufficient to 
eradicate this population of organisms [24–26, 28]. Inter-
estingly, metronidazole has shown some efficacy in the 
treatment of Crohn’s disease [17–19].

The goal of this study was aimed at answering two spe-
cific questions related to the biology of MAP: (1) this 
fastidious species is known to grow under aerobic con-
ditions so long as culture medium is supplemented with 
Mycobactin J; however, can MAP adapt to a ‘latent’ or 
non-replicating, persistent state in  vitro as is the case 

with M. tuberculosis and BCG and, (2) if so, what is the 
susceptibility (in vitro) of MAP to antimycobacterial 
drugs under aerobic versus anaerobic conditions?

Methods
Mycobacterial strains and maintenance conditions
Five strains of MAP were used in this study including 
one control strain (19,698, type strain, American Type 
Culture Collection, ATCC, Rockville, MD), three bovine 
derived strains designated B1 through B3, and one 
human associated strain (Ben, ATCC 43544). M. bovis 
BCG (Pasteur, ATCC 35734) was used as a control for 
all assays as this organism has been well characterized 
in the Wayne model of non-replicating persistence. 
All strains were maintained on Herrold’s egg yolk agar 
slants containing 2.0  µg/ml Mycobactin J (Becton–
Dickinson, Sparks, Maryland) at 37 °C in an atmosphere 
of 5% CO2.

Aerobic susceptibility testing
Aerobic susceptibility testing was conducted using 
broth microdilution in a 96-well plate format. Briefly, a 
suspension of each strain to be tested was prepared in 
Middlebrook 7H9 (M7H9) broth (Difco, Detroit, Michi-
gan) supplemented with 2.0 µg/ml Mycobactin J (Allied 
Monitor, Fayette, Missouri) and diluted to a final den-
sity of ~105 CFU/ml. Plates were inoculated with 100 µl 
of the adjusted suspension and the supplied cover put in 
place, with subsequent incubations for up to 14  days at 
37  °C. All plates were read manually using a mirror box 
and ambient light. The minimum inhibitory (MIC99) con-
centration was determined by comparing growth in the 
control wells to growth in antibiotic containing wells; 
the lowest concentration of each drug tested result-
ing in 99% inhibition versus the untreated controls was 
interpreted as the MIC. Antimicrobial agents and their 
concentrations tested included AMI (1–64 µg/ml), GEN 
(0.5–16 µg/ml), CLR (0.125–16 µg/ml), EMB (0.5–32 µg/
ml), MES (1.5–25 µg/ml), SAL (1.5–25 µg/ml), RIF (0.12–
16  µg/ml), RFX (0.12–16  µg/ml), CIP (0.12–4  µg/ml), 
and MET (12.5 µg/ml). All antimicrobial agents with one 
exception were obtained from Sigma-Aldrich, St. Louis, 
Missouri. RFX was supplied by Salix Pharmaceuticals, 
Raleigh, North Carolina. All assays were performed in 
triplicate and purity plates were done for each suscepti-
bility test.

Anaerobic studies
We used the in vitro Wayne model of NRP to determine 
the ability of MAP to survive under anaerobic conditions 
[25, 26]. Briefly, MAP cultures were grown in Dubos 
Tween-albumin broth supplemented with Mycobactin 
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J (2.0  µg/ml). Oxygen was gradually depleted from aer-
obic, exponentially growing cultures (~106  CFU/ml) 
by aeration at 250  rpm’s for a period of approximately 
10–12 days using Hungate-type anaerobic culture tubes. 
Optical density and colony forming units were deter-
mined to monitor the progression of the cultures from 
aerobic growth through NRP stages 1 and 2. Methylene 
blue was used to detect the presence of oxygen in the cul-
ture. Complete decolorization was used as an indicator 
for anaerobiosis. Once anaerobiosis had been established, 
varying concentrations of each antibiotic were added to 
respective test cultures at concentrations equivalent to as 
well as several-fold above the aerobic MIC: AMI (up to 
16 µg/ml), GEN (up to 16 µg/ml), CLR (up to 8 µg/ml), 
EMB (up to 32 µg/ml), RIF (up to 8 µg/ml), RFX (up to 
8 µg/ml), and CIP (up to 8 µg/ml). This was followed by 
further incubation for an additional 48 h. MES and SAL 
were not tested in the anaerobic model as they failed to 
inhibit any growth in the aerobic assay. BCG was tested 
in parallel as a control to demonstrate that the anaerobic 
model was performing as expected using isoniazid (INH: 
0.1–0.4  µg/ml) and RIF (0.06–0.1  µg/ml) since neither 
drug is effective in killing BCG in the anaerobic model 
[26]. MET (12.5 µg/ml), which was tested at a single con-
centration, was used as a positive control since it is only 
active under anaerobic conditions [25, 26]. For each cul-
ture, serial dilutions were made and plated to M7H10 
agar. Following ~15 days of incubation, the CFU/ml were 
determined for each culture condition and compared 
to the untreated and positive and negative controls. All 
assays were performed in triplicate.

Results
Aerobic growth and antibiotic susceptibilities
Aerobic susceptibilities varied widely between strains for 
most of the antibiotics tested (Table 1). Minimum inhibi-
tory concentrations (MIC’s, 99% inhibition) were most 
consistent between strains with ciprofloxacin (CIP, range 
1–2 µg/ml). However, greater heterogeneity in MIC’s was 
noted between MAP strains with the remaining active 
drugs: rifaximin (RFX, 0.25–1), rifampin (RIF, 0.25–4), 
amikacin (AMI, 2–8), clarithromycin (CLR, 0.125–2), 
ethambutol (EMB, 2–16), and gentamicin (GEN, 1–4). 
No inhibition was seen in any MAP strains exposed to 
metronidazole (MET), mesalamine (MES), or salicy-
lin (SAL) under aerobic conditions at the highest con-
centration tested for each drug (12.5, 25 and 25  µg/ml, 
respectively).

Anaerobic adaptation and antibiotic susceptibilities
All strains demonstrated adaptation to anaerobiosis 
similar to that of M. tuberculosis and BCG with growth 
ranging from ~107 to 108  CFU/ml after ~10–14  days 
incubation from a starting inoculum of ~106 CFU/ml. As 
shown in Fig.  1, optical density (OD) and colony form-
ing units (CFU’s) increased in parallel until ~day 10. At 
this time, CFU’s began to level off and the methylene blue 
began to fade (days 12 through 16). This stage was fol-
lowed by a slight increase in OD’s without concomitant 
increase in CFU’s/ml. For all strains, by days 18–19, the 
methylene blue had completely faded indicating conver-
sion to anaerobiosis. Anaerobic susceptibilities indicated 
more homogeneous results than those observed with 

Table 1  Minimum inhibitory concentrations to various antibiotics for MAP strains used in this study under aerobic ver-
sus anaerobic conditions

The concentrations shown are the highest tested for each antibiotic in the anaerobic model

M. bovis BCG ATCC 35734 (Pasteur) was used as a control for the anaerobic model as previously described [45]. Aerobic MICs for BCG were <0.1 for isoniazid and ≤0.06 
for rifampin. Neither drug significantly inhibited growth of BCG in the anaerobic model at concentrations above (INH >0.4; RIF >0.1) that observed under aerobic 
conditions

RIF rifampin, RFX rifaximin, AMI amikacin, CIP ciprofloxacin, CLR clarithromycin, EMB ethambutol, GEN gentamicin, MET metronidazole, MES mesalamine, SAL salicilin, 
NT not tested

MAP strain Condition Test ranges and MICs (µg/ml)

RIF RFX AMI CIP CLR EMB GEN MET MES SAL

ATCC 19698 Aerobic 2 0.5 2 2 0.5 4 1 >12.5 >25 >25

Anaerobic >8 >8 >16 >8 >8 >16 >16 12.5 NT NT

B-1 Aerobic 1 1 4 2 1 8 2 >12.5 >25 >25

Anaerobic >8 >8 >16 >8 >8 >16 >16 12.5 NT NT

B-2 Aerobic 0.25 0.25 2 1 0.125 2 2 >12.5 >25 >25

Anaerobic >8 >8 >16 >8 >8 >16 >16 12.5 NT NT

B-3 Aerobic 2 0.5 4 2 2 16 2 >12.5 >25 >25

Anaerobic >8 >8 >16 >8 >8 >16 >16 12.5 NT NT

ATCC 43544 Aerobic 4 1 8 1 1 8 4 >12.5 >25 >25

Anaerobic >8 >8 >16 >8 >8 >16 >16 12.5 NT NT
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aerobically growing cultures. No drugs tested resulted 
in 99% inhibition of growth; thus an MIC99 could not be 
established under anaerobic conditions (Table  1). Only 
MET (12.5  µg/ml) showed appreciable activity with a 
2-log10 drop in CFU’s/ml following 48  h exposure. Of 
the other drugs tested, only RIF, and RFX showed mini-
mal activity with 0.5 log10 inhibition of growth. However, 

inhibition with RIF and RFX required the use of concen-
trations 1- to 8-fold above the MIC for each drug com-
pared with aerobically growing cultures. No activity was 
observed with the remaining drugs: AMI, CIP, CLR, 
EMB, and GEN with <0.5 log decrease in CFU/ml. MES 
and SAL were not tested in the anaerobic model as they 
were not active against aerobically growing strains.
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Fig. 1  Growth and adaptation of MAP versus M. bovis BCG in the in vitro Wayne model of anaerobiosis. CFU/ml colony forming units per ml of 
culture, OD optical density of broth culture when read at A600 nm. Lines indicate CFUs/ml, bars indicate OD A600. Data shown for MAP strains ATCC 
19698 and 43544 as well as B-1, B-2, B-3, and BCG (M. bovis BCG ATCC 35734). Fading of methylene blue occurred for all strains tested between 12 
and 14 days; complete decolorization occurred for all strains between days 18 and 19 indicating anerobiosis. All strains tested exhibited a continued 
increase in OD A600 at the same point in time at which CFUs were leveling off consistent with adaptation to anaerobiosis and non-replicating 
persistence
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Discussion
The results from this study demonstrate that MAP is 
capable of both aerobic growth and adaptation in anaero-
biosis when using the ‘Wayne’ in vitro model developed 
for M. tuberculosis. This particular model illustrates the 
progression of M. tuberculosis through two stages of non-
replicating persistence (NRP) in response to the gradual 
withdrawal of oxygen from a culture over a period of days 
to weeks. Gradual withdrawal of oxygen permits time 
for genetic and phenotypic adaptation to anoxic condi-
tions via progression through two stages of NRP [25]. 
NRP-1 is a microaerophilic state in which culture OD’s 
increase, although at a slower rate than during vegeta-
tive growth, without a concomitant increase in CFU’s/
ml. NRP-2 is characterized by adaptation to complete 
anaerobiosis with no further increase in OD [25]. In 
the current study, not only did MAP demonstrate clear 
progression though both NRP-1 and NRP-2, but also in 
much the same manner as that observed with M. tuber-
culosis. It has been suggested that the ability of M. tuber-
culosis to adapt to NRP-1 and NRP-2 is responsible for 
the survival of the organism over long periods of time in 
the human host. Reversion to a vegetative state occurs 
when conditions are more favorable leading to reactiva-
tion of ‘latent’ disease. In this way, M. tuberculosis is able 
to persist in tissues for months to years without replicat-
ing or causing active disease while remaining immuno-
logically antigenic. Recently, Janagama et  al. examined 
the transcriptome of MAP in  vivo and found that tran-
scripts pertaining to latency were upregulated in intes-
tinal tissues indicating that regulation of these specific 
pathways appear to be related to tissue and cell type [29]. 
They showed that MAP obtained from tissues exhibited 
significant “shutdown” of major metabolic pathways sug-
gesting that MAP survival was directly correlated with 
the ability to evade the immune response by entering a 
persistent state and surviving within macrophages [29, 
30]. Investigators have also noted that most humans 
appear to be susceptible to MAP infection; however, 
few develop clinical signs and symptoms immediately 
following exposure [16, 31–34]. Although the reasons 
for this delay have not been elucidated, one possibil-
ity is that any MAP present have entered a state of NRP 
and much like M. tuberculosis, establish a ‘latent’ infec-
tion which the immune response is unable to eliminate. 
Waning of immune surveillance would necessarily lead 
to a reversal of NRP and potential development of active 
disease. Further complicating the picture in CD is the 
presence of polymorphisms in the NOD2/CARD15 gene 
which have been identified in those with the disease ver-
sus paired controls [35]. Not only may NOD2/CARD15 
play a role in the defense against pathogenic bacteria, but 
more importantly provide for regulation of mediators of 

intestinal inflammation. The presence of anaerobically 
adapted MAP in intestinal tissues may lead to persistent 
antigenic stimulation in the absence of cultivable bacilli 
not unlike that observed in those with latent M. tuber-
culosis infection. Recently, a large meta-analysis was 
performed which investigated genome-wide association 
scans of over 75,000 cases/controls of CD and ulcera-
tive colitis (UC) patients. This study found a strong asso-
ciation between CD/UC with genes involved in primary 
immunodeficiencies. Interestingly, a subset of the genes 
involved in primary immunodeficiencies was also associ-
ated with increased susceptibility to mycobacterial infec-
tion suggesting that those with CD/UC may be more 
susceptible to not only MAP but also M. tuberculosis as 
well [36].

Further similarities between MAP and M. tuberculosis 
were demonstrated in the present study by the differen-
tial susceptibility to antibiotics observed under aerobic 
versus anaerobic conditions. When completely adapted 
to anaerobiosis, M. tuberculosis is “impervious” to the 
activity of most aerobically active drugs as seen with 
MAP strains tested in this study [25, 28]. Only MET 
exhibited any activity against anaerobically adapted MAP 
strains, findings consistent with those observed for M. 
tuberculosis in the same model [25]. MET, is a prodrug 
which requires activation under anaerobic conditions 
[25]. Thus, the lack of activity observed for MET with 
aerobically growing MAP strains is consistent with the 
known mechanism of action of this drug. In addition, the 
log10 reduction in CFU’s/ml observed in MET exposed 
MAP under anaerobic conditions closely mirrored that 
seen with BCG, used as a control in this study.

This study does have some limitations. First, MES failed 
to inhibit any of the MAP strains tested in this study 
when grown under aerobic conditions; thus this drug was 
not tested in the anaerobic model. However, previous 
investigators reproducibly demonstrated weak bacterio-
static activity of MES against aerobically adapted MAP 
using the sensitive BACTEC 460® radiometric system 
(Becton–Dickinson, Sparks, MD) [37, 38]. Interestingly, 
the same results were not obtained using the BACTEC 
Mycobacterial Growth Indicator Tube (MGIT-960®, Bec-
ton–Dickinson) [37–39]. It is possible that differences 
in testing methods are responsible for the variability in 
MAP susceptibility to MES observed between studies. 
Unfortunately, the most sensitive of the methods used for 
MAP susceptibility testing, the BACTEC 460 system, is 
no longer commercially supported nor are consumables 
available, which in particular negatively impacts assess-
ment of bacteriostatic drugs. Secondly, a number of 
investigators have demonstrated dose-dependent inhibi-
tion of MAP in culture by a number of anti-inflammatory 
drugs including methotrexate and 6-mercaptopurine 
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[37–44]. As a result, Greenstein et  al. postulated that 
treatment of patients with inflammatory bowel disease 
with methotrexate and 6-mercaptopurine may result in 
inhibition of MAP and secondarily a decrease in pro-
inflammatory cytokines [42]. In the current study, testing 
of anti-inflammatory drugs was beyond the scope of this 
project. However, future studies are planned which will 
determine the activity of anti-inflammatory drugs against 
MAP under both aerobic and anaerobic conditions.

Although a definitive causal link between CD and MAP 
has not been established, the findings as presented in 
this investigation raise some interesting questions. Could 
the presence of anaerobically adapted MAP in intestinal 
tissues lead to persistent antigenic stimulation and the 
chronic inflammation observed in CD? Could the vari-
able efficacy of different antibiotic regimens used in CD 
patients be related to the presence of mixed populations 
of aerobically and anaerobically adapted MAP? Is relapse 
related to ‘reactivation’ of anaerobically adapted organ-
isms not eliminated by conventional antibiotic regimens? 
Could this explain why some studies have shown efficacy 
in CD patients receiving MET? These and other ques-
tions require further investigation including prospective, 
randomized, clinical trials which utilize antimicrobial 
combination regimens active against both aerobic and 
anaerobically adapted MAP.

Conclusions
This study demonstrates the ability of MAP to adapt to 
anaerobiosis in the in vitro Wayne model developed for 
M. tuberculosis. Adaptation of MAP to a non-replicating 
persistent state demonstrated differential susceptibil-
ity to antibiotics under aerobic versus anaerobic condi-
tions. This has implications for treatment to eradicate 
this organism in  vivo as standard antibiotics currently 
used to target MAP have little to no effect against non-
replicating persistent bacilli. Since mixed populations of 
MAP are likely to exist simultaneously in vivo, combina-
tion therapies containing metronidazole and aerobically 
active drugs such as clarithromycin and rifaximin should 
be considered.
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