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Overexpression of serine protease HtrA 
enhances disruption of adherens junctions, 
paracellular transmigration and type IV 
secretion of CagA by Helicobacter pylori
Aileen Harrer, Manja Boehm, Steffen Backert and Nicole Tegtmeyer*

Abstract 

Background:  The serine protease HtrA is an important factor for regulating stress responses and protein quality 
control in bacteria. In recent studies, we have demonstrated that the gastric pathogen Helicobacter pylori can secrete 
HtrA into the extracellular environment, where it cleaves-off the ectodomain of the tumor suppressor and adherens 
junction protein E-cadherin on gastric epithelial cells.

Results:  E-cadherin cleavage opens cell-to-cell junctions, allowing paracellular transmigration of the bacteria across 
polarized monolayers of MKN-28 and Caco-2 epithelial cells. However, rapid research progress on HtrA function is 
mainly hampered by the lack of ΔhtrA knockout mutants, suggesting that htrA may represent an essential gene in 
H. pylori. To circumvent this major handicap and to investigate the role of HtrA further, we overexpressed HtrA by 
introducing a second functional htrA gene copy in the chromosome and studied various virulence properties of the 
bacteria. The resulting data demonstrate that overexpression of HtrA in H. pylori gives rise to elevated rates of HtrA 
secretion, cleavage of E-cadherin, bacterial transmigration and delivery of the type IV secretion system (T4SS) effector 
protein CagA into polarized epithelial cells, but did not affect IL-8 chemokine production or the secretion of vacuolat-
ing cytotoxin VacA and γ-glutamyl-transpeptidase GGT.

Conclusions:  These data provide for the first time genetic evidence in H. pylori that HtrA is a novel major virulence 
factor controlling multiple pathogenic activities of this important microbe.
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Background
Helicobacter pylori is a Gram-negative, flagellated patho-
gen, which persistently colonizes the human stomach 
[1, 2]. About 50% of the world population carries these 
bacteria, and infections are associated with chronic, 
often asymptomatic gastritis in all infected individuals. 
However, more severe gastric diseases such as peptic 
ulceration, mucosa-associated lymphoid tissue (MALT) 
lymphoma and gastric adenocarcinoma can arise in a 

subset of patients [3, 4]. The clinical outcome of H. pylori 
infection is regulated by several key elements including 
the genetic predisposition of the host, the bacterial geno-
type and environmental factors [5–7]. Dozens of bacte-
rial determinants have been described to impact H. pylori 
pathogenicity. Two classical virulence factors are known, 
the vacuolating cytotoxin (VacA) and the cytotoxin-asso-
ciated genes pathogenicity island (cagPAI). The cagPAI 
encodes a type IV secretion system (T4SS) for transport 
of the oncoprotein CagA across the bacterial membranes 
into host target cells [8, 9]. Upon delivery, CagA under-
goes phosphorylation at C-terminal Glu-Pro-Ile-Tyr-Ala 
(EPIYA) sequence repeats by the c-Src and c-Abl family 
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of tyrosine kinases [10–12]. Translocated CagA binds to 
and activates or inactivates a series of signaling factors 
in a phosphorylation-dependent and phosphorylation-
independent fashion [13, 14]. The T4SS can also induce 
profound pro-inflammatory responses such as the release 
of chemokine interleukin-8 (IL-8) via transcription fac-
tor NF-κB, which proceeds widely independently of 
CagA delivery [15–17]. On the other hand, VacA is an 
autotransporter and secreted into the extracellular space, 
where it induces multiple responses including cell vacu-
olation, alteration of endo-lysosomal trafficking, immune 
cell inhibition and apoptosis [5, 18]. Other pathogenicity-
associated processes comprise urease-triggered neutrali-
zation of acidic pH, flagella-mediated motility, expression 
of multiple adhesins (BabA/B, SabA, AlpA/B, HopQ, 
HopZ, OipA and others), inhibition of T cell proliferation 
by secreted γ-glutamyl-transpeptidase GGT, and secre-
tion of proteases such as HtrA [3, 19–21].

High temperature requirement protein A (HtrA ) fam-
ily members comprise a set of evolutionarily related ser-
ine proteases and chaperones, which are found in most 
prokaryotes and eukaryotes [22–24]. HtrA proteases 
are generally transported into the periplasm, where they 
form proteolytically active oligomers with important 
function in protein quality control [25, 26]. Its chief role 
is to remove damaged, misfolded or mislocalized pro-
teins in the periplasm. HtrA proteins contain no regu-
latory components or ATP binding domains [22]. Thus, 
they are commonly referred to as ATP-independent 
chaperone-proteases. Bacterial HtrA proteases com-
monly comprise an N-terminal signal sequence, fol-
lowed by a trypsin-like serine protease domain and one 
or two PDZ modules at the C-terminus, which permit 
protein–protein interactions [23, 27–29]. Inactivation of 
the htrA gene by mutation regularly results in high tem-
perature sensitivity of many bacteria [30–35]. For a long 
time it was supposed that HtrA proteases are strictly 
functioning only inside the bacterial periplasm. How-
ever, we have previously introduced a new characteris-
tic for the HtrAs of Campylobacter jejuni and H. pylori. 
These HtrA proteins can be actively secreted into the 
extracellular environment, where they cleave host cell 
factors [36–41]. It has been demonstrated that secreted 
HtrA from both species can open the adherens junctions 
in cultured polarized epithelial cells in vitro by cleaving 
the extracellular NTF (N-terminal fragment)-domain 
of E-cadherin, a well-known cell-to-cell adhesion fac-
tor [37, 39, 42]. Inactivation of C. jejuni htrA results in 
downregulated E-cadherin cleavage and bacterial trans-
migration across polarized cell monolayers in vitro [35, 
39], and reduced apoptosis and immunopathology in the 
gut of infected mice in  vivo [43, 44]. Similarly, HtrA is 
fundamental for the virulence of various other pathogens 

including Yersinia enterocolitica, Klebsiella pneumo-
niae, Chlamydia trachomatis, Salmonella enterica, Lis-
teria monocytogenes, Legionella pneumophila, Shigella 
flexneri, Burkholderia cenocepacia and Borrelia burg-
dorferi [31, 32, 34, 45–50]. However, an htrA knockout 
strain in H. pylori is not yet available because the genera-
tion of mutants was unsuccessful in a broad collection 
of worldwide strains, suggesting that htrA may represent 
an essential gene in H. pylori [51, 52]. To study the role 
of HtrA further, we aimed to overexpress HtrA in H. 
pylori and examine various virulence properties of the 
bacteria. Our results show that overexpression of HtrA 
in H. pylori results in elevated secretion rates of the pro-
tease, cleavage of E-cadherin, bacterial transmigration 
and delivery of CagA into polarized epithelial cells.

Results and discussion
Introduction and expression of a second htrA gene copy 
in H. pylori
Helicobacter pylori htrA is an essential bifunctional 
gene with crucial intracellular and extracellular func-
tions [51, 52]. In order to study the function of htrA in 
more detail, we aimed to overexpress the protein by 
introduction of a second htrA gene copy of strain 26695 
(htrA26695) in the chromosome of H. pylori. For this pur-
pose, we placed htrA26695 under an inducible isopropyl-
β-d-thiogalactopyranoside (IPTG)-responsive promotor 
as described [53]. Expression of htrA26695 was driven by 
the pTac promotor construct (Fig. 1a, top) derived from 
plasmid pILL2150 [53]. Promoter activity was described 
as tightly regulated for LacZ expression and suitable for 
the analysis of essential H. pylori genes [53]. We trans-
formed this construct in two H. pylori wild-type strains, 
P12 or 26695 (called Hp wt) and the resulting transfor-
mants were designated Hp htrA26695. We obtained similar 
results for both H. pylori strains and subsequently show 
the representative results for one set of experiments. Hp 
wt and Hp htrA26695 were grown for 24 h in brain heart 
infusion (BHI) liquid broth medium containing 10% 
FCS in the presence or absence of 1 mM or 2 mM IPTG, 
respectively, and the resulting lysates were checked for 
expression of HtrA and other well-known H. pylori pro-
teins using Western blotting. The results indicate that 
HtrA expression in Hp htrA26695 in the presence of IPTG 
increased up to about 2.4-fold compared to the control 
without IPTG, but did not change in Hp wt (Fig.  1b, 
c). Control blots using α-CagA and α-FlaA antibodies 
showed that the expression of CagA and FlaA proteins 
remained stable over time and were unaffected by addi-
tion of IPTG to all strains (Fig. 1b). These results demon-
strate that the IPTG-dependent expression system works 
well for htrA26695 in two H. pylori strains and is very use-
ful for further analyses.
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Overexpression of HtrA in H. pylori enhances its proteolytic 
activity
Next, we aimed to analyse if Hp wt or Hp htrA26695 can 
form proteolytically active HtrA oligomers in the absence 
or presence of IPTG. For this purpose, the samples gen-
erated for Fig. 1b were subjected to casein zymography. 
Bacterial pellets were loaded onto 0.1% casein containing 
gels and separated under non-reducing conditions and 
then renatured as described [38]. The results show that 
HtrA activity of Hp htrA26695 increased up to ~2.5-fold in 
the presence of IPTG compared to Hp wt or the control 
without IPTG, giving rise to active HtrA oligomers with 
a molecular weight ranging from ~180 kDa to more than 
200  kDa in the cell pellet (Fig.  2a, arrows). As further 
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control, corresponding signals for proteolytically active 
HtrA were at a similar basal level in both strains in the 
absence of IPTG (Fig. 2a, b).

Induction of HtrA leads to higher secretion levels of HtrA, 
but not VacA and GGT
The next objective was to evaluate the level of secreted 
HtrA in the culture supernatants. After 24 h of growth, 
bacteria-free supernatants and cell pellets were pre-
pared and the presence of secreted HtrA proteins in the 
supernatants was investigated by immunoblotting using 
α-HtrA antibodies (Fig.  3a). The results show that the 
bands for secreted HtrA in Hp htrA26695 in the presence 
of IPTG increased up to ~1.8-fold compared to the strain 
without IPTG, but did not change significantly in Hp wt 
(Fig. 3a, b). As control, corresponding signals for secreted 
HtrA were at a similar basal level in both strains in the 
absence of IPTG (Fig.  3a, b). In further experiments, 
the supernatants were probed for two other well-known 
secreted H. pylori proteins, VacA and GGT. As shown 
in Fig.  3a, the band intensities for secreted VacA and 
GGT were constantly stable in both strains and did not 
change by adding IPTG (Fig. 3a, c). On the other hand, 
CagA is a well-known translocated T4SS effector pro-
tein, not secreted into the supernatant [54]. The α-CagA 
blots of the supernatants are devoid of CagA, indicating 
absence of lysed bacteria and cell debris in our samples 
as expected (Fig. 3a). Taken together, these experiments 
demonstrate that secretion of HtrA by Hp htrA26695 is sig-
nificantly enhanced after addition of IPTG compared to 
the Hp wt control, while the secretion levels of VacA and 
GGT remained unaffected.

Overexpression of HtrA does not affect host cell binding 
and IL‑8 secretion by H. pylori
As next, we aimed to study the functional role of HtrA 
overexpression during infection of epithelial cells. For 
this purpose, monolayers of polarized MKN-28 cells 
were infected for 8 h with IPTG-induced or control Hp 
wt and Hp htrA26695, respectively. To test if differential 
HtrA expression might affect host cell binding by H. 
pylori, we determined the CFU of bound bacteria by an 
established protocol [55]. The results show that the num-
ber of bound bacteria was similar between the samples 
and varied only between 10 and 16  CFU per MKN-28 
cell (Fig.  4). In addition, we have analyzed the amount 
of chemokine IL-8 secreted into the supernatants. The 
levels of IL-8 were also at similar high level between the 
samples and varied only between ~12,000 and 17,000 pg/
mL. These results suggest that overexpression of HtrA by 
IPTG induction does not affect the bacteria’s viability and 
host cell binding capabilities. The T4SS-dependent activ-
ity of H. pylori towards IL-8 secretion was also very high 

and similar between the samples, suggesting that T4SS 
functions are intact and remain unchanged with regard 
to the pro-inflammatory responses during infection with 
the different strains.
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Fig. 3  Elevated HtrA secretion levels in H. pylori does not affect the 
extracellular delivery of VacA and GGT. a H. pylori wild-type strain 
26695 (Hp wt) and 26695 transformed with htrA26695 were grown for 
24 h in BHI broth medium with 1% β-cyclodextrin in the presence or 
absence of 1 or 2 mM IPTG, respectively. Bacteria-free supernatants 
were prepared and subjected to Western blotting using α-HtrA, 
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control. The band intensities of secreted HtrA (b) as well as VacA 
and GGT (c) were quantified densitometrically. The relative protein 
expression is given in “fold change”. All secretion assays were done in 
triplicates
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Overexpression of HtrA enhances disruption of cell‑to‑cell 
junctions by H. pylori
In the next set of experiments, confluent polarized 
Caco-2 cells were infected with the various IPTG-
induced H. pylori strains for 24 h and subsequently fixed 
for immunofluorescence microscopy staining against the 
adherens junction protein E-cadherin and H. pylori. The 
results confirm that the signals of Hp wt or Hp htrA26695 
bacteria (red) attached to the host cells are similarly high 
between the samples. However, while the mock con-
trol cells exhibited typical E-cadherin signals between 
all neighbouring cells, H. pylori infection disrupted the 
E-cadherin staining significantly (Fig.  5b–d). Individual 
cells showing downregulated or dislocated E-cadherin 
signals are marked with blue and yellow arrowheads, 
respectively (Fig. 5b, c). The number of cells with changed 
E-cadherin patterns was more pronounced during infec-
tion with Hp htrA26695 (Fig. 5c, d). Longer infection times 
up to 48 h, however, led to a complete disruption of the 
E-cadherin patterns by Hp htrA26695 bacteria (data not 
shown). These data indicate that overexpression of HtrA 
is associated with enhanced damage of the cell-to-cell 
junctions over time.

Overexpression of HtrA enhances bacterial transmigration 
across polarized cells
In addition, we determined the transmigration rates by 
the different H. pylori strains. For this purpose, polarized 

Caco-2 and MKN-28 cells were grown in a transwell fil-
ter system for 14  days to reach confluent monolayers. 
The cells were infected with IPTG-induced or control 
Hp wt or Hp htrA26695 for 24  h in the apical chamber. 
Transmigrated bacteria were harvested from the bottom 
chambers, grown on GC agar plates, and the CFUs were 
determined (Fig.  6a). The results show that the number 
of transmigrated Hp htrA26695 bacteria in the presence 
of IPTG were about 420–520 × 103 CFU and increased 
up to ~2.2-fold compared to the corresponding IPTG-
induced control Hp wt bacteria (Fig.  6). As a further 
control, the numbers of transmigrated bacteria of both 
strains in the absence of IPTG were at a similar basal 
level of approximately 200–265 × 103 H. pylori (Fig. 6a). 
In addition, we measured the transepithelial electrical 
resistance (TER) in the same experiments. In agreement 
with the results obtained above, the data show that the 
TER values dropped down significantly (Fig.  6b), corre-
lating with enhanced cell damage (Fig.  5) and transmi-
gration by Hp htrA26695 bacteria in the presence of IPTG 
(Fig. 6a).

Overexpression of HtrA results in elevated E‑cadherin 
cleavage and CagA phosphorylation
As next we investigated the cleavage of E-cadherin in 
infected vs. non-infected polarized epithelial cell lines 
by Western blotting after 24 h of incubation (Fig. 7). The 
results show that the intensity of cell-associated full-
length E-cadherin signals dropped-down during infec-
tion with Hp htrA26695 bacteria in the presence of IPTG 
and the corresponding cleaved-off NTF-domain, present 
in the supernatant, increased up to ~twofold compared 
to the corresponding IPTG-induced control Hp wt bac-
teria (Fig.  7a, c). As another control, the signals of the 
NTF-fragment produced by both strains in the absence 
of IPTG were at a similar basal level (Fig. 7a, c). Remark-
ably, the extent of E-cadherin cleavage induced by the 
different strains correlated with the intensity of signals 
obtained for translocated phospho-CagA in the same 
experiments (Fig.  7b, c). The strongest phospho-CagA 
signals were always observed for Hp htrA26695 bacteria 
in the presence of IPTG, suggesting that increased HtrA 
expression and activity significantly positively regulate 
T4SS functions with regard to translocation and phos-
phorylation of CagA in polarized epithelial cells.

Conclusions
Diverse pathogens encode proteases with crucial func-
tions during infection, but knowledge on secreted pro-
teases and their activities in H. pylori is very limited. In 
many bacteria, HtrA is a well-recognized factor in the 
periplasm, which contains chaperone and proteolytic 
functions with important roles in protein quality control 
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involved in stress tolerance and bacterial survival [23, 
25–29]. In addition, it was demonstrated that HtrA has 
a significant impact on the virulence of multiple bacte-
rial pathogens including Borrelia, Burkholderia, Campy-
lobacter, Chlamydia, Klebsiella, Legionella, Listeria, 
Salmonella, Shigella and Yersinia species. Interestingly, 
htrA does not appear as an essential gene in each of these 
bacteria because ΔhtrA knockout mutation has been 
described [31, 32, 34, 43–50]. In contrast, inactivation of 
the htrA gene in H. pylori has been unsuccessful in more 
than one hundred worldwide isolates, but the reasons 

for this failure are still unclear [37, 51, 52]. Remarkably, 
it was also demonstrated that pharmacological inhibition 
of HtrA protease activity effectively killed H. pylori, while 
it did not affect the growth and viability of other Gram-
negative pathogens including Salmonella and Shigella 
[52].

Research progress on H. pylori HtrA is mainly ham-
pered by the lack of ΔhtrA knockout mutants. Thus, 
other genetic manipulation strategies are required to 
study HtrA function during the infection process. Here 
we developed a genetic approach to overexpress HtrA in 
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two clinical isolates, P12 and 26695. For this purpose, a 
second htrA gene copy was introduced into the H. pylori 
chromosome and placed under an IPTG-inducible pro-
motor [53]. Once the HtrA proteins are translated by the 
bacteria they are delivered into the periplasm and subse-
quently secreted into the extracellular environment. This 
important new aspect seems to be conserved among a 
wide range of worldwide H. pylori isolates [52]. We could 
show here that overexpression of HtrA enhanced not 
only its proteolytic activity by up to ~2.5-fold, but also 
the secretion of the protease by ~1.8-fold. Interestingly, 
the secretion of other well-known bacterial virulence 
determinants, VacA and GGT, was not affected by HtrA 
overexpression, suggesting that the secretion of these fac-
tors follow different, non-linked pathways. In addition, 
we could demonstrate that various virulence-associated 
properties of H. pylori were also not affected including 

bacterial attachment to the epithelial cells and induc-
tion of pro-inflammatory responses such as the secre-
tion of IL-8. In contrast, the transepithelial migration of 
H. pylori overexpressing HtrA increasing significantly 
up to ~2.2-fold compared to the control bacteria. This 
phenotype was accompanied by significantly enhanced 
damage to the adherens junction protein E-cadherin. Our 
Western blotting data demonstrated that HtrA-mediated 
cleavage of full-length E-cadherin was enhanced, leading 
to elevated levels of the 90  kDa E-cadherin NTF-frag-
ment in the supernatants of infected cells. Immunofluo-
rescence microscopy confirmed these observations and 
showed that the cell-to-cell junctions of infected Caco-2 
cells were significantly more disrupted after 24  h com-
pared to the wild-type control infection, explaining why 
higher numbers of bacteria can cross the epithelial bar-
rier and reach basolateral compartments. Finally, we 
observed that the levels of CagA translocation and phos-
phorylation increased up to ~twofold in HtrA-over-
expressing H. pylori compared to the control bacteria. 
These observations can be explained by reports show-
ing that CagA delivery into host cells requires a receptor, 
which was identified as the basolateral integrin member 
α5β1 [56–62]. Integrins are well-known mammalian cell 
adhesion receptors, which facilitate anchoring of host 
cells to the extracellular matrix and which are absent at 
apical surfaces [63, 64]. These findings let us to suggest 
a novel mechanism how the T4SS of H. pylori works in 
polarized epithelial cells by cooperating with the secreted 
serine protease HtrA, which opens cell-to-cell junctions. 
Using an inducible genetic system to overexpress HtrA, 
we could enhance the proteolytic activity of HtrA, neces-
sary for elevated paracellular transmigration of H. pylori 
across the polarized epithelial cells to reach basolateral 
membranes and inject CagA in an integrin-dependent 
fashion. Extensive research has shown in recent years that 
the above discussed features basically resemble a pheno-
type, called epithelial-mesenchymal transition (EMT). 
Gastric cancerogenesis is known for its aggressiveness 
and tendency to metastasize. EMT is the initial step in 
metastasis, orchestrated by various cellular factors [65]. 
We proposed that the activity of secreted HtrA is maybe 
the initial step in a signaling cascade, followed by CagA 
and probably others, that triggers EMT in gastric epi-
thelial cells. Translocated CagA can then deregulate cell 
polarity and scattering, by various pathways including 
the interaction with partioning kinase Par1b changing 
cell polarity [66] and by stabilizing Snail, a transcriptional 
repressor of E-cadherin expression [67]. Taken together, 
these data provide for the first time genetic evidence that 
HtrA is a major novel virulence factor of H. pylori, con-
trolling multiple pathogenic activities of this important 
microbe.
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Methods
MKN‑28 and Caco‑2 cell culture and H. pylori infection
Human MKN-28 cells (JCRB, #0253) were originally 
isolated from gastric adenocarcinoma. The Caco-2 cells 
(ATCC HTB-37) were obtained from a human colon 
adenocarcinoma. Both cell lines have been extensively 
used over the last twenty years as models for studying 
the gastrointestinal barrier. Cells were cultured in 6-well 
plates with RPMI1640 or DMEM medium, respectively, 
containing 4 mM glutamine (Invitrogen, Karlsruhe/Ger-
many), and 10% FCS (Invitrogen, Karlsruhe/Germany) 

[68]. H. pylori strains 26695, P12 and their mutants were 
grown on horse serum GC agar plates supplemented 
with nystatin (1 μg/mL), vancomycin (10 μg/mL) and tri-
methoprim (5  μg/mL), and if necessary with 4 μg/chlo-
ramphenicol per mL. Growth was performed for 2 days 
at 37 °C in anaerobic chambers containing a CampyGen 
gas mix (Oxoid, Wesel/Germany) at 37 °C [69]. H. pylori 
was harvested and resuspended in phosphate buffered 
saline (PBS, pH 7.4) using sterile cotton swabs (Carl Roth, 
Karlsruhe/Germany). The bacterial concentration was 
measured in a spectrophotometer as optical density (OD) 
at 600  nm (Eppendorf, Hamburg/Germany). Infections 
were carried out at a multiplicity of infection (MOI) of 50 
[70]. All infection assays were done in triplicates.

H. pylori mutagenesis
To introduce a second htrA gene copy in the H. pylori 
chromosome, we made use of the previously generated 
IPTG-inducible LacIq pTac system for lacZ gene expres-
sion as cloned in vector pILL2150 [53]. In this system, the 
promoters were engineered to be under the control of H. 
pylori RNA polymerase. The amiE gene promoter of H. 
pylori was taken to constitutively express the LacIq repres-
sor, which is present in two copies (Fig. 1a, top). Expres-
sion of the lacZ reporter gene was driven by the pTac 
promotor as described [53]. We replaced the lacZ gene of 
pILL2150 by the htrA gene of strain 26695 using the NdeI 
and BamHI restriction sites. Then the complete cassette 
shown in Fig.  1a (top) was introduced in the chromo-
somal plasticity region of H. pylori strains P12 and 26695 
(between ORFs HP0999 and HP1000) as shown in Fig. 1a 
(bottom) using established transformation methods [71, 
72]. At the 3′ end, a chloramphenicol resistance gene cas-
sette (CAT) was added to select clones. The correct inte-
gration and expression of the htrA gene was verified by 
PCR and Western blotting, respectively.

HtrA, VacA and GGT secretion assays
Wild-type and mutant H. pylori strains were suspended 
in BHI medium supplemented with 1% β-cyclodextrin 
(Sigma Aldrich) [73]. The optical density was deter-
mined and adjusted to OD600 =  0.2. To allow bacterial 
protein secretion in the culture supernatant, H. pylori 
was grown for 24 h under shaking at 160 rpm in the pres-
ence or absence of IPTG (Sigma Aldrich). The cell pellets 
and the supernatants were prepared by centrifugation at 
4000  rpm. The supernatants were transferred through 
0.21 μm sterile filters (Sigma Aldrich) to remove rem-
nant bacterial cells. Lack of live bacteria in the superna-
tant was verified by the absence of bacterial growth after 
5  days of incubation on GC agar plates. The resulting 
bacterial pellets and supernatants were then analysed by 
Western blotting as described below.
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Transwell infection studies
MKN-28 and Caco-2 cells were cultured on 0.33 cm2 cell 
culture inserts with 3  μm pore size (Corning Life Sci-
ences, Schiphol/Netherlands). The cells were grown to 
confluent monolayers, and then incubated for another 
14 days to allow cell polarization [39]. TER was measured 
with an Electrical Resistance System (ERS) (World Pre-
cision Instruments, Berlin/Germany). Maximal TER val-
ues indicated that the monolayers reached maximal cell 
polarity [39]. The cells were infected in the apical com-
partment at MOI of 50 and the numbers of transmigrated 
bacteria were quantified in aliquots taken from the basal 
chambers and counting colony forming units (CFU) on 
GC agar plates after 5 days of incubation [35].

Cell binding assay
Infection of MKN-28 and Caco-2 cell monolayers was 
performed at a density of 3.5 × 105 cells in 6-well plates 
as described previously [55]. After infection, infected 
cells were washed three times with 1 mL of pre-warmed 
culture medium per well to remove non-adherent bac-
teria. To determine the total CFU corresponding to 
cell-associated bacteria, the infected monolayers were 
incubated with 1  mL of 0.1% saponin in PBS at 37  °C 
for 15  min. The resulting suspensions were diluted and 
plated on GC agar plates. The CFUs were counted after 
5 days of incubation.

Casein zymography
Undiluted aliquots of the bacteria were loaded onto 
10% SDS–PAGE gels containing 0.1% casein (Carl Roth, 
Karlsruhe/Germany) and separated by electrophoresis 
under non-reducing conditions. After protein separation, 
the gel was renatured in 2.5% Triton X-100 solution at 
room temperature for 60 min with gentle agitation, equil-
ibrated in developing buffer (50  mM Tris–HCl, pH 7.4, 
200 mM NaCl, 5 mM CaCl2, 0.02% Brij35) at room tem-
perature for 30 min with gentle agitation, and incubated 
overnight in fresh developing buffer at 37  °C. Transpar-
ent HtrA bands with caseinolytic activity were visualized 
by staining with 0.5% Coomassie Blue R250 as described 
[35, 39].

Antibodies
The following antibodies were purchased: rabbit poly-
clonal α-CagA antibody (Austral Biologicals, San Ramon, 
CA/USA), monoclonal pan-phosphotyrosine α-PY99 
(Santa Cruz, Santa Cruz, CA/USA), rabbit α-GAPDH 
(Santa Cruz), rabbit α-H. pylori (Dako, Glostrup/Den-
mark) and two monoclonal antibodies directed against 
the extracellular domain of E-cadherin, H-108 (Santa 
Cruz) and CD324 (BD Biosciences, San Jose, CA/USA). 

HtrA proteins were detected by rabbit polyclonal α-HtrA 
antiserum raised against purified recombinant HtrA 
(Biogenes, Berlin/Germany). Rabbit polyclonal α-FlaA 
and α-GGT antibodies were described previously [74, 
75]. The α-VacA antibody (#123) was kindly provided by 
Timothy Cover (Nashville, TN/USA).

Immunofluorescence staining and microscopy
Immunofluorescence staining with different antibod-
ies as shown in each experiment was performed as 
described [76]. Briefly, cell samples were fixed with meth-
anol at −20  °C for 10 min followed by permeabilization 
with 0.5% Triton-X100 for 1  min and blocking with 1% 
BSA, 0.1% Tween-20 in PBS for 30  min. Proteins were 
stained with the above mentioned α-E-cadherin (BD) 
and α-H. pylori antibodies. As secondary antibodies, we 
used TRITC (tetramethylrhodamine isothiocyanate)-
conjugated goat anti-rabbit and FITC (fluorescein 
isothiocyanate)-conjugated goat anti-mouse (Thermo 
Fisher Scientific, Darmstadt/Germany). Samples were 
analysed using a Leica DMI4000B fluorescence micro-
scope and different lasers (Leica Microsystems, Wetzlar/
Germany). Images were obtained via LAS AF computer 
software (Leica Microsystems) and E-cadherin staining 
was quantified as “fold change” using the ImageJ Soft-
ware (version 2.0). The mock control was set as “1”.

SDS–PAGE, dot blots and immunoblotting
Bacterial pellets, cell-free supernatants or infected cells 
were mixed with equal amounts of 2× SDS–PAGE buffer 
and boiled for 5  min. Proteins were separated by SDS–
PAGE on 8% polyacrylamide gels and blotted onto PVDF 
membranes (Immobilon-P, Merck Millipore) as described 
[77]. Before addition of the antibodies, membranes were 
blocked in TBST buffer (140 mM NaCl, 25 mM Tris–HCl 
pH 7.4, 0.1% Tween-20) with 3% BSA or 5% skim milk for 
1 h at room temperature [78]. As secondary antibodies, 
horseradish peroxidase-conjugated α-mouse or α-rabbit 
polyvalent rabbit and pig immunoglobulin, respectively, 
were used (Life Technologies, Darmstadt/Germany). 
Antibody detection was performed with the ECL Plus 
chemiluminescence Western Blot kit (GE Healthcare Life 
Sciences, Munich/Germany) [79].

Quantification of IL‑8 chemokines by ELISA
MKN-28 cells were incubated for 8 h with H. pylori, and 
mock cells with medium served as negative control. The 
culture supernatants were collected and stored at −80 °C 
until assayed. IL-8 concentrations in the supernatants 
were determined by standard ELISA according to manu-
facturer’s procedures (Becton–Dickinson, Heidelberg/
Germany) [80].
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Quantification of band intensities in Western blots 
and casein gels
Quantification of band signals on immunoblots was per-
formed by densitometric analysis using the Image Lab 
software (BioRad, Munich/Germany) and indicated the 
“fold change” of protein expression or phosphorylation 
level per sample. As shown in the corresponding figures, 
the control band on each gel was set as “1”.

Statistics
All data were evaluated via Student’s t test with Sigma-
Plot statistical software (version 13.0). Statistical sig-
nificance was defined by p ≤ 0.05 (*), p ≤ 0.01 (**) and 
p ≤ 0.001 (***).
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