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Abstract 

Background:  Atypical enteropathogenic Escherichia coli (aEPEC) is regarded as a globally emerging enteropathogen. 
aEPECs exhibit various level of resistance to a range of antibiotics, which is increasing alarmingly. The present study 
investigated the antimicrobial resistance of aEPEC isolates recovered from diarrheal patients, healthy carriers, animals, 
and raw meats.

Results:  Among 267 aEPEC isolates, 146 (54.7%) were resistant to tetracycline, followed by ampicillin (49.4%), strepto-
mycin (46.1%), and piperacillin (41.2%). Multidrug resistance (MDR) was detected in 128 (47.9%) isolates, and 40 MDR 
isolates were resistant to ≥ 10 antimicrobial agents. A total of 47 (17.6%) aEPEC isolates were identified as extended-
spectrum β-lactamase (ESBL)-producers. The blaCTX-M-14 and blaCTX-M-15 genes were predominant among ESBL-produc-
ing isolates.

Conclusions:  This investigation depicted the occurrence of multidrug-resistant and ESBL-producing aEPEC isolates in 
China. The results suggested that it is necessary to continuously monitor the emergence and spread of MDR aEPEC.
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Background
Escherichia coli remains one of the most common etio-
logical agents of diarrheal illness among children under 
5 years old in developing countries [1, 2]. Six major diar-
rheagenic E. coli are well-characterized: enteropatho-
genic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), 
enterotoxigenic E. coli (ETEC), enteroaggregative E. 
coli (EAEC), enteroinvasive E. coli (EIEC), and diffusely 
adherent E. coli (DAEC) [3]. EPEC are the primary cause 
of summer diarrhea in infants in developing countries 
[4]. It was estimated that about 79,000 deaths every year 
are linked with EPEC, which was the first to be identified 
and is the most prevalent pathotype of diarrheagenic E. 
coli [5].

EPEC isolates carry the locus of enterocyte effacement 
(LEE) island, which can induce the hallmark histopathol-
ogy on the surfaces of intestinal epithelial cells, known 
as the attaching and effacing (A/E) lesion. A/E results 
in electrolyte disruption and eventual diarrhea [3, 6, 7]. 
Some EPEC isolates possess the adherence factor (EAF) 
plasmid, which carries the bundle-forming pilus genes, 
the plasmid-encoded regulator genes, and other viru-
lence-related factors [3]. Depending on the presence or 
absence of the EAF plasmid, EPEC strains are divided 
into two subgroups: typical EPEC (tEPEC) and atypical 
EPEC (aEPEC) [8]. In developing countries, tEPEC was 
considered to be the main cause of infantile diarrhea 
for decades [6]. However, further studies have shown an 
apparent increase in the involvement of aEPEC strains 
in endemic childhood diarrhea and outbreaks in adults 
in recent years [9–14]. Thus, aEPEC strains have been 
regarded as emerging enteropathogens and have caused 
a number of infections [15–17]. Humans and animals, 
including food-production animals and pet animals, can 
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be reservoirs of aEPEC, while the major reservoirs of 
tEPEC are humans [6].

Multidrug resistance (MDR), which was designated 
as resistance to one agent in three or more antibiotic 
classes [18], has been increasing alarmingly in E. coli 
(http://www.ecdc.europa.eu/en/healthtopics/antimicro-
bial_resistance/database/Pages/map_reports.aspx) [19]. 
The establishment of MDR is mediated by many diverse 
and interactive mechanisms, e.g., drug efflux, enzymatic 
inactivation, and target protection [20]. The determi-
nants responsible for MDR are widely distributed among 
E. coli isolates, irrespective of their resources [20]. Pro-
duction of extended-spectrum β-lactamase (ESBL) is one 
of the main mechanisms conferring the spread of MDR 
[21], because most ESBL-producing isolates show exten-
sive resistance to other antimicrobial agents [22]. The 
genes encoding ESBLs are usually located on plasmids 
and different types of ESBLs have been identified glob-
ally [23]. According to their amino acid sequences, ESBLs 
are classified into several types, such as TEM, SHV, CTX, 
OXA, PER, and GES [24]. Currently, the most frequently 
detected genetic type of ESBL is CTX-M [25]. There are 
five major sublineages of CTX-M: 1, 2, 8, 9, and 25 [26].

The spread of antibiotic resistance among pathogens 
has become an emerging public health concern [21]. In 
China, aEPEC appeared to be one of the most common 
pathogens associated with infectious diarrhea [27]. How-
ever, there are few data available regarding the resistance 
of aEPEC. The present study aimed to determine the 
overall antimicrobial resistance profiles, the current prev-
alence of MDR, the ESBL genotype distribution, and the 
determinants of resistance in aEPEC isolates recovered 
from diarrheal patients, healthy carriers, animals, and 
raw meat in China. The results will fill in large knowledge 
gaps concerning this pathogen in China, and provide fur-
ther information and guidance for the application antimi-
crobials in farm animals and in clinical treatment.

Methods
Isolation and identification of aEPEC isolates
Samples from different sources (diarrheal patients, 
healthy carriers, animals, and raw meat) were collected 
during 2006–2015 in ten geographical regions (Henan, 
Shanxi, Heilongjiang, Beijing, Qinghai, Guangdong, 
Sichuan, Shanghai, Guizhou, and Anhui) of China. 
Fecal samples of diarrheal patients were collected when 
patients were admitted to sentinel hospitals; stools from 
healthy carriers were sampled during routine physical 
examinations; while stool samples of animals and raw 
meat samples were collected during routine surveys.

The samples were processed as previously described 
[28]. In brief, the overnight enrichment culture of each 
sample was centrifuged and the cells were lysed in lysis 

buffer (10 mM Tris–HCl [pH 8.3], 100 mM NaCl, 1 mM 
EDTA [pH 9.0], 1% Triton X-100). The released DNA was 
then examined for eae gene by polymerase chain reaction 
(PCR) assays. The enrichment culture with eae+ were 
streaked on CHROMagar™ ECC plate (CHROMagar 
Co., Paris, France) and incubated at 37  °C for 18–24  h. 
Ten E. coli-like colonies from each culture were selected 
to detect the presence of the eae gene. The eae+ colonies 
were then subcultured on Luria–Bertani (LB) (Oxoid, 
Basingstoke, UK) plates, incubated for another 18–24 h, 
and subjected to PCR assays for the eae, stx1, stx2, and 
bfpA genes. Isolates that were eae positive, but bfpA and 
stx1/stx2 negative, were defined as aEPEC [6].

A total of 267 aEPEC isolates were identified and 
included in this study (Additional file  1). Among them, 
151, 32, and 51 isolates were recovered from the stools 
of diarrheal patients, healthy carriers, and animals (cattle, 
pig, chicken, bird, pika, and marmot), respectively. The 
remaining 33 strains were isolated from raw meat (beef, 
pork, mutton, and chicken meat).

Phenotypic antimicrobial susceptibility testing
Susceptibility to a panel of 23 drugs belonging to 12 
classes was determined using the disc diffusion method 
in accordance with the Clinical and Laboratory Standards 
Institute (CLSI) (2017) [29]: penicillins: ampicillin (AM, 
10 μg), piperacillin (PRL, 100 μg); β-lactam/β-lactamase 
inhibitor combinations: amoxicillin–clavulanic acid 
(AMC, 20/10  μg), ampicillin–sulbactam (SAM, 
10/10  μg); cephems: cefepime (FEP, 30  μg), cefotaxime 
(CTX, 30  μg), ceftriaxone (CRO, 30  μg), cefuroxime 
(CXM, 30 μg), ceftazidime (CAZ, 30 μg); monobactams: 
aztreonam (ATM, 30 μg); carbapenems: imipenem (IPM, 
10  μg), meropenem (MEM, 10  μg); aminoglycosides: 
gentamicin (CN, 10  μg), kanamycin (K, 30  μg), strepto-
mycin (S, 10  μg); tetracyclines: tetracycline (TE, 30  μg); 
quinolones: nalidixic acid (NA, 30 μg); fluoroquinolones: 
ciprofloxacin (CIP, 5 μg), norfloxacin (NOR, 10 μg), levo-
floxacin (LEV, 5 μg); folate pathway inhibitors: trimetho-
prim–sulfamethoxazole (SXT, 1.25/23.75  μg); phenicols: 
chloramphenicol (C, 30 μg); and nitrofurans: nitrofuran-
toin (F, 300 μg) (Oxoid). E. coli ATCC® 25922 served as 
the control. Strains were resuspended at a concentra-
tion of 0.5 McFarland standards in saline solution (0.85% 
NaCl) (BioMerieux, Marcyl’Etoile, France) and plated 
on Muller-Hinton agar plate (Thermo Fisher Scientific, 
Waltham, MA, USA) and grown at 37  °C for 16–18  h. 
Using a Scan 1200 (Interscience, Saint Nom, France), 
the diameters of the zone of inhibition were measured 
to the nearest 0.1  mm and recorded. Each isolate was 
determined as susceptible (S), intermediate (I), or resist-
ant (R) according to the CLSI standards (2017). Isolates 
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exhibiting resistance to at least one agent in three or 
more antimicrobial classes were defined as MDR strains 
[18].

Screening and confirmation of ESBL producing isolates
ESBL production was screened phenotypically using 
cefotaxime (30  μg). The presumptive isolates were 
confirmed by combination disk tests with cefotaxime 
and ceftazidime (30  μg), with and without clavulanic 
acid (10  μg), as described by the CLSI guidelines [29]. 
A ≥ 5 mm increase in the zone diameter for cefotaxime 
or ceftazidime in combination with clavulanic acid ver-
sus the zone diameter of the corresponding antimicrobial 
agent alone defined an ESBL producer [29]. Klebsiella 
pneumoniae ATCC® 700603 was used as a positive 
control.

Identification of β‑lactamase genes
DNA templates were prepared by crude extraction, as 
previously described [30]. All isolates were screened for 
the presence of the blaCTX-M [26], blaTEM, and blaSHV 
[31] gene using PCR. Four sets of group-specific primers 
were further used to identify five subgroups (blaCTX-M-1, 
blaCTX-M-2, blaCTX-M-8/25/26, and blaCTX-M-9) of blaCTX-M 
[26]. The PCR products were resolved on a 1% agarose 
gel and then subjected to sequencing using an ABI 3730 
Automated DNA Analyzer (Applied Biosystems, Foster 
City, CA, USA). The resulting sequences were compared 
against the sequences in GenBank (https://blast.ncbi.
nlm.nih.gov/Blast.cgi).

Whole genome sequencing and identification 
of antimicrobial resistance genes
Based on their serotypes, pulse-field gel electrophore-
sis (PFGE) patterns and multi-locus sequence typing 
(MLST), 96 isolates (69 from diarrheal patients, 16 from 
healthy carriers, and 11 from raw meat) were selected 
from among the 267 aEPEC strains for whole genome 
sequencing. Bacterial genomic DNA was extracted using 
a Wizard® Genomic DNA Purification Kit (Promega 
Co., Madison, WI, USA) according to the manufacturer’s 
instructions. Genomic DNA was sequenced using an Illu-
mina HiSeq 2500 PE125 instrument (Illumina, Santiago, 
CA, USA) with 500-bp libraries at the Beijing Novogene 
Bioinformatics Technology Co., Ltd. Coverage greater 
than 100× was obtained. The sequence read data was fil-
tered by quality control using the Illumina data pipeline. 
High-quality filtered reads were assembled into contigs 
and scaffolds using SOAP de novo (http://soap.genom-
ics.org.cn/soapdenovo.html). Based on the N90, N50, 
minimum contig size, maximum contig size, and num-
ber of contigs, the optimum genome assembly was cho-
sen. Contigs with length > 500 bp were used for further 

analysis. Assembled draft genomes of all 96 isolates were 
then used to predict coding genes using the GeneMarkS 
program [32]. tRNAs and rRNAs were identified using 
tRNAscan-SE [33] and the rRNAmmer [34], respectively. 
Seven databases (Gene Ontology, Kyoto Encyclopedia of 
Genes and Genomes, Clusters of Orthologous Groups, 
Non-Redundant Protein Database, Transporter Classifi-
cation Database, Swiss-Prot, and TrEMBL) were used to 
predict gene functions. The Antibiotic Resistance Genes 
Database (http://ardb.cbcb.umd.edu/) was used to search 
for antimicrobial resistance genes [35]. The raw data of 
these genomes have been submitted to the GenBank 
under accession numbers listed in Additional file 2.

Statistical analysis
Differences in the antimicrobial resistance patterns 
among aEPEC origins were assessed by a two-tailed Chi 
square test or Fisher’s exact test, with a level of signifi-
cance of P < 0.05. All statistical analyses were performed 
using Epi Info software, version 3.5.3 [36].

Results
Antimicrobial resistance of aEPEC isolates
Of the 267 aEPEC isolates tested, the highest levels of 
resistance were to tetracycline (54.7%), followed by 
ampicillin (49.4%), streptomycin (46.1%), and piperacil-
lin (41.2%). Resistances against other antibiotics were 
as follows: trimethoprim–sulfamethoxazole (39.3%), 
nalidixic acid (35.2%), gentamicin (28.8%), kanamycin 
(14.6%), cefuroxime (19.5%), cefotaxime (18.4%), ceftri-
axone (18.0%), and chloramphenicol (10.5%). However, 
most isolates were sensitive to cephalosporins (93.6% for 
cefepime and 97.0% for ceftazidime), fluoroquinolones 
(95.1% for ciprofloxacin, 96.6% for norfloxacin, and 95.5% 
for levofloxacin), and nitrofurantoin (98.5%). All isolates 
were susceptible to carbapenems (imipenem and mero-
penem) (Table 1, Additional file 1).

Although the isolates from different sources showed 
the highest resistance to tetracycline, the resistance rate 
of other antibiotics was different among isolates from 
diarrheal patients, healthy carriers, animals, and raw 
meat (Table  1). Of the 151 aEPEC strains isolated from 
diarrheal patients, 89 (58.9%) showed resistance to tet-
racycline, followed by ampicillin (55.6%), streptomycin 
(51.7%), trimethoprim–sulfamethoxazole (47.7%), piper-
acillin (47.0%), and nalidixic acid (41.1%).

Among the 32 strains isolated from healthy-carrier, 
resistances against tetracycline, ampicillin, and pipera-
cillin were observed in 15 (46.9%), 15 (46.9%) and 13 
(40.6%) isolates, respectively. In contrast, all isolates 
from healthy carriers were susceptible to β-lactam/β-
lactamase inhibitor combinations (amoxicillin–clavu-
lanic acid and ampicillin–sulbactam), fluoroquinolones 
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(ciprofloxacin, norfloxacin and levofloxacin), chloram-
phenicol, and nitrofurantoin.

Of the 51 animal-originated strains, resistance to tet-
racycline was dominant (41.2%), followed by ampicillin 
(39.2%), streptomycin (39.2%), piperacillin (37.3%), and 
trimethoprim–sulfamethoxazole (35.3%). However, all 
51 isolates were susceptible to cefepime, ceftazidime, and 
aztreonam.

Isolates from raw meat displayed the highest level of 
resistance to tetracycline (63.6%), followed by strepto-
mycin (48.5%) and ampicillin (39.4%). However, all 33 

isolates were susceptible to cefepime, ceftazidime, nor-
floxacin, levofloxacin, and nitrofurantoin.

MDR aEPEC isolates
MDR was detected in 128 (47.9%) isolates. The preva-
lence of MDR was 55.6% (84/151), 31.3% (10/32), 37.3% 
(19/51), and 45.5% (15/33) among aEPEC isolates from 
diarrheal patients, healthy carriers, animals, and raw 
meat, respectively. Significant differences were observed 
in the overall distribution of MDR isolates among the 
four sources (χ2 =  9.563, P =  0.023). The prevalence of 

Table 1  Antimicrobial susceptibility profiles of 267 aEPEC strains isolated from different sources

Class/antimicrobial No. of resistant isolates from different sources (%) Total P value

Diarrheal patient (151) Healthy carrier (32) Animal (51) Raw meat (33)

Penicillins

 Ampicillin 84 (55.6) 15 (46.9) 20 (39.2) 13 (39.4) 132 (49.4) 0.1185

 Piperacillin 71 (47.0) 13 (40.6) 19 (37.3) 7 (21.2) 110 (41.2) 0.0484

β-Lactam/β-lactamase inhibitor combinations

 Amoxicillin–clavulanic acid 14 (9.3) 0 10 (19.6) 3 (9.1) 27 (10.1) 0.0319

 Ampicillin–sulbactam 24 (15.9) 0 11 (21.6) 9 (27.3) 44 (16.5) 0.0177

Cephems

 Cefepime 14 (9.3) 3 (9.4) 0 0 17 (6.4) 0.0396

 Cefotaxime 39 (25.8) 5 (15.6) 1 (2.0) 4 (12.1) 49 (18.4) 0.0013

 Ceftriaxone 38 (25.2) 5 (15.6) 2 (3.9) 3 (9.1) 48 (18.0) 0.0029

 Ceftazidime 7 (4.6) 1 (3.1) 0 0 8 (3.0) 0.2622

 Cefuroxime 39 (25.8) 5 (15.6) 2 (3.9) 6 (18.2) 52 (19.5) 0.0071

Monobactams

 Aztreonam 20 (12.6) 3 (9.4) 0 1 (3.0) 23 (8.6) 0.0202

Carbapenems

 Imipenem 0 0 0 0 0 –

 Meropenem 0 0 0 0 0 –

Aminoglycosides

 Gentamicin 57 (37.7) 3 (9.4) 11 (21.6) 6 (18.2) 77 (28.8) 0.0019

 Kanamycin 22 (14.6) 1 (3.1) 9 (17.6) 7 (21.2) 39 (14.6) 0.1782

 Streptomycin 78 (51.7) 9 (28.1) 20 (39.2) 16 (48.5) 123 (46.1) 0.0692

Tetracyclines

 Tetracycline 89 (58.9) 15 (46.9) 21 (41.2) 21 (63.6) 146 (54.7) 0.0816

Quinolones

 Nalidixic acid 62 (41.1) 7 (21.9) 17 (33.3) 8 (24.2) 94 (35.2) 0.0866

Fluoroquinolones

 Ciprofloxacin 8 (5.3) 0 4 (7.8) 1 (3.0) 13 (4.9) 0.4053

 Norfloxacin 5 (3.3) 0 4 (7.8) 0 9 (3.4) 0.1447

 Levofloxacin 8 (5.3) 0 4 (7.8) 0 12 (4.5) 0.2020

Folate pathway inhibitors

 Trimethoprim–sulfamethoxazole 72 (47.7) 6 (18.8) 18 (35.3) 9 (27.3) 105 (39.3) 0.0060

Phenicols

 Chloramphenicol 11 (7.3) 0 9 (17.6) 8 (24.2) 28 (10.5) 0.0020

Nitrofurans

 Nitrofurantoin 3 (2.0) 0 1 (2.0) 0 4 (1.5) 0.7275
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MDR in isolates from diarrheal patients was signifi-
cantly higher than that from healthy carriers (χ2 = 6.282, 
P = 0.012) and animals (χ2 = 5.150, P = 0.023) (Table 2). 
Forty (31.3%) MDR isolates were resistant to ≥ 10 anti-
microbial agents tested in the study. It was noteworthy 
that two patient isolates were resistant to 17 and 19 anti-
biotics, respectively.

ESBL producing aEPEC isolates
A total of 47 (17.6%) ESBL-producing isolates were iden-
tified among 267 aEPEC isolates. The isolates from diar-
rheal patients showed the highest rate of ESBL-producing 
(38/151, 25.2%), compared to those from healthy carrier 
isolates (5/32, 15.6%), raw meat (3/33, 9.1%), and animals 
(1/51, 2.0%) (Table 3). Most (83.0%) ESBL-producing iso-
lates were MDR strains. Compared with the non-ESBL 
producing isolates, ESBL producers displayed signifi-
cantly higher rates of resistance to ampicillin, piperacil-
lin, amoxicillin–clavulanic acid, ampicillin–sulbactam, 
cefepime, cefotaxime, ceftriaxone, ceftazidime, cefuro-
xime, aztreonam, gentamicin, kanamycin, streptomycin, 
tetracycline, nalidixic acid, trimethoprim–sulfamethoxa-
zole, and nitrofurantoin (Fig. 1).

Molecular characteristics of ESBL genes
The presence of blaCTX-M, blaTEM, and blaSHV genes in 47 
ESBL-producing isolates was screened using PCR. The 
blaCTX-M-1 subgroup was identified in 20 (42.6%) ESBL-
producing isolates, with 17 from diarrheal patients and 
three from healthy carriers. The blaCTX-M-9 subgroup 
was found in 30 (63.8%) isolates, with 24 from diarrheal 
patients, three from raw meat, two from healthy carriers, 
and one from animals. A total of 26 isolates recovered 
from diarrheal patients possessed the blaTEM subgroup 
(Table 3). None of the 47 isolates examined in this study 
was positive for the genes belonging to subgroups blaCTX-

M-2, blaCTX-M-8/25/26, or blaSHV.
DNA sequencing showed that blaCTX-M-14 gene was 

the most prevalent, and was present in 28 (59.6%) ESBL-
producing isolates, with 22 from diarrheal patients, three 
from raw meat, two from healthy carriers, and one from 
animal. The blaCTX-M-15 gene was identified in 11 (23.4%) 

isolates, with nine from diarrheal patients and two from 
healthy carriers. The blaCTX-M-55 and blaCTX-M-3 genes 
were found in four and five isolates, respectively. The two 
genes, blaCTX-M-13 and blaCTX-M-65, belonging to the sub-
group blaCTX-M-9, were only found in two separate diar-
rheal patient-derived isolates. In addition, all of the 26 
blaTEM genes were identified as blaTEM-1. The coexistence 
of subgroup blaCTX-M-1 and blaCTX-M-9 genes was identi-
fied in three diarrheal patient isolates, including one that 
harbored blaCTX-M-14 and blaCTX-M-55, and two that har-
bored blaCTX-M-14 and blaCTX-M-15 (Table 3).

Distribution of antimicrobial resistance determinants
Among the 96 genome-sequenced aEPEC isolates, 50 
were resistant to ampicillin and possessed β-lactamase-
related genes, including blaTEM-1 (48.0%), blaCTX (16.0%), 
blaOXA (6.0%), blaTEM-1 + blaCTX (16.0%), blaTEM-1 + bla-
LEN (2.0%), blaCTX + blaLEN (4.0%), and blaCTX + blaOXA 
(2.0%) (Table 4, Additional file 2). There was a significant 
association (χ2 =  84.715, P =  0.000) between the pres-
ence of these genes and resistance to ampicillin. Fifty-
one isolates resistant to tetracycline harbored resistance 
associated determinants, including tetA (52.9%), tetB 
(3.9%), tetC (2.0%), tetA + tetC (17.6%), and tetB + tetC 
(10.0%). A significant association was observed between 
resistance to tetracycline and the occurrence of tetA 
(χ2 =  47.172, P =  0.000) and tetB (P =  0.062), but not 
with tetC (χ2 =  1.129, P =  0.288). Three and five chlo-
ramphenicol-resistant isolates harbored cat and cml 
genes, respectively. The sul1  +  dfra12/17 (37.5%) and 
sul1  +  sul2  +  dfra5/12/17 (35.0%) were the predomi-
nant resistance genes among the 40 isolates that were 
resistant to trimethoprim–sulfamethoxazole. The com-
bination of sul and dfra was detected more frequently 
in resistant strains than in sensitive strains (χ2 = 72.432, 
P = 0.000). The most frequent resistance gene observed 
in 33 phenotypically gentamicin-resistant isolates was 
aac3iia (69.7%). Four different genes or gene combi-
nations, i.e., ant3ia, aph33ib, aph33ib  +  aph6id, and 
aph33ib +  aph6id +  ant3ia, were found in four (9.1%), 
two (4.5%), 24 (54.5%), and one (2.3%) of the 44 strepto-
mycin-resistant isolates, respectively (Table 4, Additional 

Table 2  The distribution of multidrug resistance (MDR) strains among 267 aEPEC isolates

No. of antimicrobial group No. of resistant isolates from different sources (%) Total

Diarrheal patient Healthy carrier Animal Raw meat

0 38 (25.2) 10 (31.3) 24 (47.1) 7 (21.2) 79 (29.6)

1–2 29 (19.2) 12 (37.5) 7 (13.7) 11 (33.3) 59 (22.1)

≥ 3 84 (55.6) 10 (31.3) 19 (37.3) 15 (45.5) 128 (47.9)

Total 151 (100) 32 (100) 51 (100) 33 (100) 267 (100)
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Table 3  Characteristics of 47 ESBL-producing aEPEC isolates

Origin (no. of isolates) Isolates Antimicrobial resistance pattern blaCTX-M blaTEM

CTX-M-1 group CTX-M-9 group

Diarrheal patients (38) EP004 AM, PRL, SAM, FEP, CTX, CRO, CXM, CAZ, ATM, CN, K, S, TE, NA, SXT CTX-M-15 CTX-M-14 TEM-1

EP008 AM, PRL, SAM, CTX, CRO, CXM, ATM, CN, K, S, TE, NA, SXT CTX-M-14 TEM-1

EP012 AM, PRL, SAM, CTX, CRO, CXM, ATM, CN, K, S, TE, NA, SXT CTX-M-14 TEM-1

EP013 AM, PRL, SAM, CTX, CRO, CXM, ATM, CN, K, S, TE, NA, SXT CTX-M-14 TEM-1

EP014 AM, PRL, SAM, CTX, CRO, CXM, ATM, CN, K, S, TE, NA, SXT CTX-M-14 TEM-1

EP017 AM, PRL, AMC, SAM, CTX, CRO, CXM, CN, K, S, TE, NA, SXT, C CTX-M-14 TEM-1

EP028 AM, PRL, FEP, CTX, CRO, CXM, CAZ, ATM, CN, TE, NA, SXT CTX-M-15 TEM-1

EP033 AM, PRL, CTX, CRO, CXM, CN, S, TE CTX-M-14 TEM-1

EP041 AM, PRL, CTX, CRO, CXM, CN, S, SXT CTX-M-3 TEM-1

EP043 AM, PRL, CTX, CRO, CXM, ATM CTX-M-55 TEM-1

EP064 AM, PRL, CTX, CRO, CXM, CN, NA, SXT CTX-M-3 TEM-1

EP074 AM, PRL, AMC, SAM, FEP, CTX, CRO, CXM, CAZ, ATM, CN, S, TE, NA, SXT CTX-M-15

EP079 AM, PRL, AMC, SAM, FEP, CTX, CRO, CXM, CAZ, ATM, CN, K, S, TE, NA, 
SXT

CTX-M-15 TEM-1

EP088 AM, PRL, FEP, CTX, CRO, CXM, CN, S, TE, SXT CTX-M-3

EP103 AM, PRL, SAM, FEP, CTX, CRO, CXM, ATM, CN, K, S, TE, NA, CIP, LEV, C, F CTX-M-55 CTX-M-14 TEM-1

EP105 AM, PRL, CTX, CRO, CXM, ATM, CN, K, S, TE, NA, CIP, LEV, SXT, F CTX-M-65

EP109 AM, PRL, AMC, CTX, CRO, CXM, ATM, CN, S, NA, SXT CTX-M-15 TEM-1

EP112 AM, PRL, SAM, CTX, CRO, CXM, CN, S, TE, NA, SXT CTX-M-14

EP115 AM, PRL, AMC, SAM, FEP, CTX, CRO, CXM, ATM, CN, K, S, TE, NA, CIP, 
LEV, SXT, C, F

CTX-M-15 TEM-1

EP116 AM, PRL, AMC, FEP, CTX, CRO, CXM, CN, S, TE, NA, SXT CTX-M-14 TEM-1

EP136 AM, PRL, CTX, CRO, CXM, ATM CTX-M-15

EP155 AM, PRL, CTX, CRO, CXM, CN, S, TE, SXT CTX-M-14

EP163 AM, PRL, CTX, CRO, CXM, S, SXT CTX-M-14

EP166 AM, PRL, CTX, CRO, CXM, TE, SXT CTX-M-14 TEM-1

EP171 AM, PRL, FEP, CTX, CRO, CXM, CAZ, ATM, CN, TE, SXT CTX-M-55 TEM-1

EP176 AM, PRL, FEP, CTX, CRO, CXM, CN, K, S, TE, NA CTX-M-14 TEM-1

EP179 AM, PRL, SAM, CTX, CRO, CXM, CN, S, TE, NA, SXT CTX-M-14 TEM-1

EP180 AM, PRL, FEP, CTX, CRO, CXM, CAZ, ATM, S, TE, NA CTX-M-15 CTX-M-14

EP182 AM, PRL, SAM, CTX, CRO, CXM, CN, K, S, TE, NA CTX-M-14

EP186 AM, PRL, CTX, CRO, CXM, CN, K, S, TE, NA, CIP, NOR, LEV, SXT, C CTX-M-14 TEM-1

EP187 AM, PRL, AMC, FEP, CTX, CRO, CXM, CN, S, TE, SXT CTX-M-3 TEM-1

EP191 AM, PRL, SAM, CTX, CRO, CXM, CN, K, S, TE, SXT CTX-M-14 TEM-1

EP193 AM, PRL, SAM, FEP, CTX, CRO, CXM, CAZ, ATM, CN, K, S CTX-M-55 TEM-1

EP239 AM, PRL, AMC, SAM, CTX, CRO, CXM, CN, S, TE, NA, SXT CTX-M-14 TEM-1

EP370 AM, PRL, FEP, CTX, CRO, CXM, CN, TE, NA, SXT CTX-M-14

EP408 AM, PRL, SAM, CTX, CRO, CXM, ATM, S, TE, NA, SXT CTX-M-14 TEM-1

EP410 AM, PRL, CTX, CRO, CXM, ATM, CN, NA CTX-M-15
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file  2). Significant associations between the presence 
of these genes and streptomycin resistance were also 
observed (χ2 = 57.281, P = 0.000).

Discussion
Globally, EPECs displaying different levels of resistance 
to a range of antibiotics are increasing alarmingly [37]. 
The antimicrobial resistance of EPEC has been reported 
in many countries, including Brazil [38, 39], India [40], 
Iran [41], Ireland [42], the United Kingdom [43], and 
Singapore [44]. In China, only two studies are available: 
one characterizing 39 EPEC isolates in ready-to-eat foods 
[45] and another examining 58 EPEC isolates recov-
ered from pediatric diarrheal patients [46]. These EPEC 
strains were either restricted to being from foods or were 
regionally restricted. In the present study, the 267 aEPEC 

isolates were recovered from different sources (diarrheal 
patients, healthy carriers, animals and raw meat) from 
ten provinces/cities of China. This was the first study 
to reveal the comprehensive antimicrobial resistance of 
aEPEC in China and to provide further insight into the 
current situation of this specific diarrheagenic E. coli.

Of the 151 diarrheal patient-derived aEPEC isolates, 
the highest resistance rate was to tetracycline, followed 
by ampicillin and streptomycin, which was different from 
reports in Iran [47], Brazil [39], and India [40]. Physicians 
in China should pay attention to the antimicrobial resist-
ance of clinical aEPEC isolates, because EPEC is still one 
of the most common pathogens associated with infec-
tious diarrhea. Domestic animals, such as sheep, cat-
tle, poultry, and pigs, have been considered as the main 
reservoirs of aEPEC [14]. In Europe, the predominant 

Table 3  continued

Origin (no. of isolates) Isolates Antimicrobial resistance pattern blaCTX-M blaTEM

CTX-M-1 group CTX-M-9 group

EP412 AM, PRL, CTX, CRO, CXM, TE CTX-M-13

Healthy carriers (5) EP318 AM, PRL, FEP, CTX, CRO, CXM, CAZ, ATM CTX-M-15

EP361 AM, PRL, FEP, CTX, CRO, CXM, K, S, TE, NA CTX-M-14

EP 402 AM, PRL, FEP, CTX, CRO, CXM, ATM, TE CTX-M-3

EP404 AM, PRL, CTX, CRO, CXM, S CTX-M-14

EP415 AM, PRL, CTX, CRO, CXM, ATM, TE CTX-M-15

Animal (1) EP298 AM, PRL, CTX, CRO, CXM, K, S, TE, NA, SXT, C CTX-M-14

Raw meat (3) EP244 AM, PRL, AMC, SAM, CTX, CRO, CXM, ATM, S, TE, NA, SXT, C CTX-M-14

EP299 AM, PRL, CTX, CRO, CXM, K, S, TE, NA, SXT, C CTX-M-14

EP344 AM, PRL, CTX, CRO, CXM, K, S, TE, C CTX-M-14
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Fig. 1  Comparison of antimicrobial susceptibility profiles of ESBL-producing and non-ESBL-producing aEPEC isolates. Proportions (%) of isolates 
(y-axis) resistant to antimicrobial agents (x-axis) among ESBL-producing and non-ESBL-producing isolates
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antimicrobial agents administered to animals are sul-
phonamides and/or trimethoprim, tetracyclines and 
β-lactams [48]. However, there is little antimicrobials 
consumption data available in this field in China. It was 
reported that high doses and multiple types of veterinary 
antimicrobial products were used routinely in livestock 
husbandry [49]. The agents mentioned above are also 
included in the antimicrobials that can be used in the 
treatment and prevention of animal diseases. The high 
prevalence of antimicrobial-resistant aEPEC in raw meat 
and animals could be explained by the possible overuse 
and misuse of tetracyclines, ampicillin, and trimetho-
prim/sulphonamides in veterinary practice and agricul-
ture. Poor sanitary conditions or practices might also 
play a role in the spread of resistant aEPEC.

The emergence of multidrug resistance, especially 
among Enterobacteriaceae, i.e., E. coli, has become a crit-
ical public concern [18]. In this study, nearly half of the 
267 aEPEC strains were multidrug resistant. These MDR 
strains showed high resistance to tetracycline (92.2%) and 
ampicillin (89.8%), and 31.3% of that showed resistance 
to ≥  10 antimicrobial agents. In addition, in this study, 
significantly more aEPEC strains from diarrheal patients 
showed multidrug resistance than did strains from 
healthy carriers and animals. Thus, diarrheal patients 
may be the main source of MDR aEPEC strains in China 
and clinicians should be careful when using antibiotics as 
therapy for EPEC infections. A recent study showed that 
wild birds could also act as carriers of MDR EPEC [50]. 
Consistent with this, we found that 19 (37.3%) aEPEC 
strains from animals, including birds, pika, and marmot, 
were MDR. In this sense, MDR aEPEC could emerge in 
the natural environment and then pose potential risk to 
public health.

Most multidrug resistances in Enterobacteriaceae are 
associated with ESBLs [51]. E. coli has become one of 
main producers of ESBL and has posed a major challenge 
in the treatment of bacterial infection [19]. A previous 
study showed that occurrence of ESBL-producing E. coli 
in patients in China varied from 30.2 to 57.0% [52]. In our 
study, 47 (17.6%) aEPEC isolates were identified as ESBL-
producing strains, with 38 the isolates coming from diar-
rheal patients. Most ESBL-producing isolates showed 
co-resistance to other antimicrobial agents, such as ami-
noglycosides, tetracyclines, and sulfonamides, and even 
to fluoroquinolones [22]. The present results showed 
that ESBL-producing aEPEC isolates displayed co-resist-
ance to aminoglycosides, tetracycline, nalidixic acid, tri-
methoprim–sulfamethoxazole, and nitrofurantoin, but 
not to fluoroquinolones. It is worth noting that MDR E. 
coli usually implies significant increase of resistance and 
pathogenic potential, such as the emergence of ESBL-
producing clone ST131 [53] and another clinically rele-
vant ESBL-producing clone ST410 [54]. The multi-locus 
sequence typing (MLST) analysis in our previous study 
indicated that these aEPEC isolates showed high clonal 
diversity, but none of them were identified as ST131 or 
ST410 [28].

TEM, SHV, and CTX-M are the three main genetic 
types of ESBLs [19]. Currently, the CTX-M-type ESBLs 
have dramatically increased and largely outnumber 
other types of ESBLs [25]. However, there are extensive 
geographical variations in the distribution of dominant 
CTX-M types across different countries, such as CTX-
M-2 in Japan, CTX-M-1 in Italy, and CTX-M-2 and 
CTX-M-15 in Brazil. By contrast, CTX-M-15 widespread 
throughout the world [22, 55, 56]. In the present study, 
all 47 ESBL-producing aEPEC isolates possessed CTX-M 

Table 4  Resistance-related genes among  96 genome 
sequenced aEPEC isolates

Phenotype of resist‑
ance (no. of isolates)

Resistance genes No. of isolates (%)

Ampicillin (50) blaTEM-1 24 (48.0)

blaCTX 8 (16.0)

blaOXA 3 (6.0)

blaTEM-1 + blaCTX 8 (16.0)

blaTEM-1 + blaLEN 1 (2.0)

blaCTX + blaLEN 2 (4.0)

blaCTX + blaOXA 1 (2.0)

Tetracycline (51) tetA 27 (52.9)

tetB 2 (3.9)

tetC 1 (2.0)

tetA + tetC 9 (17.6)

tetB + tetC 5 (10.0)

Chloramphenicol (8) cat 3 (37.5)

cml 5 (62.5)

Trimethoprim–sul-
famethoxazole (40)

sul1 + dfra12/17 15 (37.5)

sul2 + dfra14/17 6 (15.0)

sul3 + dfra12 3 (7.5)

sul1 + sul2 + dfra5/12/17 14 (35.0)

dfra1 2 (5.0)

dfra17 1 (2.5)

Gentamicin (33) aac3iia 23 (69.7)

aac3iia + ant2ia 3 (9.1)

aac3iia + aph3ia 2 (6.1)

aac3iia + ant2ia + aph3ia 1 (3.0)

Streptomycin (44) ant3ia 4 (9.1)

aph33ib 2 (4.5)

aph33ib + aph6id 24 (54.5)

aph33ib + aph6id + ant3ia 1 (2.3)

Kanamycin (12) ant2ia 1 (8.3)

aph3ia 3 (25.0)

ant2ia + aph3ia 2 (16.7)
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genes. No TEM or SHV type ESBL genes were detected. 
The most prevalent gene was blaCTX-M-14, followed by 
blaCTX-M-15, with majority being from diarrheal patients. 
These findings revealed that CTX-M-14 and CTX-M-15 
were predominant among aEPEC isolates in China. This 
is consistent with previous reports that CTX-M-14 was 
the most abundant CTX-M type among E. coli strains 
from animals [57] and clinical patients in China [52]. 
CTX-M-55 was observed only in four aEPEC strains from 
diarrheal patients, although it was demonstrated to be 
widespread in E. coli isolates from food-producing ani-
mals and environmental samples in China [58, 59]. These 
findings suggested that humans might acquire these 
strains from animals, as well as from the food chain.

High levels of resistance to tetracycline, ampicillin, 
and streptomycin were identified among 96 genome 
sequenced aEPEC isolates. More than half of the ampi-
cillin resistant strains harbored the blaTEM-1 gene in this 
study. It has been reported that blaTEM was the most 
frequent β-lactamase gene involved in ampicillin resist-
ance in E. coli [60]. Of the known tetracycline resistance 
genes, only tetA, tetB, and tetC (alone or in combina-
tion) were detected, indicating that the major mecha-
nism involved in tetracycline resistance in aEPEC isolates 
is active efflux. This is consistent with the investigation 
of EPEC from diarrheic rabbits in Portugal [60]. Among 
the aEPEC resistant to aminoglycosides, 69.7% of the iso-
lates resistant to gentamicin carried aac3iia; 54.5% iso-
lates resistant to streptomycin possessed genes aph33ib 
and aph6id; and most isolates resistant to kanamycin 
harbored aph3ia. These results suggested that amino-
glycoside acetyltransferases are the main mechanism of 
resistance to gentamicin, while aminoglycoside phospho-
transferases are the predominant mechanism mediating 
streptomycin and kanamycin resistance. With respect 
to determinants responsible for resistance to trimetho-
prim–sulfamethoxazole, our results demonstrated that 
sul1, sul2, dfra12, and/or dfra17 were the predominant 
genes, as revealed by a previous study [60].

Some limitations exist in this study. Compared with 
the number of strains from diarrheal patients, fewer iso-
lates from healthy carriers, animals, and raw meat were 
included. Further investigations are needed to clarify 
the association between virulence and antimicrobial 
resistance.

In conclusion, our investigation revealed the occur-
rence of multidrug-resistant and ESBL-producing aEPEC 
isolates in China. These results suggest that it is neces-
sary to continuously monitor the emergence and spread 
of MDR aEPEC to guide the application of antimicrobials 
in farm animals and in clinical treatment.
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