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The role of mycobiota‑genotype association 
in inflammatory bowel diseases: a narrative 
review
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Abstract 

Inflammatory bowel disease (IBD) is a chronic inflammatory disease affecting various parts of the gastrointestinal 
tract. A majority of the current evidence points out the involvement of intestinal dysbiosis in the IBD pathogenesis. 
Recently, the association of intestinal fungal composition With IBD susceptibility and severity has been reported. 
These studies suggested gene polymorphisms in the front line of host defense against intestinal microorganisms are 
considered to play a role in IBD pathogenesis. The studies have also detected increased susceptibility to fungal infec‑
tions in patients carrying IBD-related mutations. Therefore, a literature search was conducted in related databases to 
review articles addressing the mycobiota-genotype association in IBD.
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Inflammatory bowel disease pathogenesis
Inflammatory bowel disease (IBD) is a chronic relaps-
ing disease affecting various parts of the gastrointestinal 
tract and encompasses two common disorders: Crohn’s 
disease (CD) and Ulcerative Colitis (UC). IBD is a world-
wide issue, especially in urban and westernized countries 
among young individuals [1], assumed to result from 
an improper and continuous inflammatory response to 
commensal microbes in a genetically susceptible host 
[2]. So far, the pathogenesis of the disease is considered 
to be a combination of genetic predisposition and envi-
ronmental factors. The majority of current evidence 
emphasizes the involvement of intestinal dysbiosis in IBD 
pathogenesis [3]. While intestinal epithelial cells (IECs) 
are constantly exposed to microbial components; they 
are regarded not only as a structural but also a functional 
barrier in the front line of host defense against intestinal 

microorganisms. The functional alteration of these cells 
is hypothesized to be associated with IBD [4]. Bacteria as 
the predominant organisms of the gastrointestinal tract 
gained the greatest attention in IBD microbial studies 
[5–7]. Nonetheless, the association of intestinal fungal 
composition with mucosal inflammation in both CD and 
UC has recently become into consideration [8–11]. Of 
note, increased IBD flares were associated with increased 
global fungal load accompanied by alteration of certain 
fungal species in the microbiota [12–14].

To date, numerous gene polymorphisms are found 
to be connected to IBD susceptibility [15] and sever-
ity; for instance, an increased colitis severity was driven 
by activation of Leucine-rich repeat kinase 2 (LRRK2), 
an important enzyme that regulates innate immunity 
through nuclear factor kappa B (NF-κB) signaling path-
way [16]. Some articles studied the association of specific 
intestinal bacterial microbiota with gene polymorphisms 
[17, 18]. However, few have focused on the role of fun-
gal subsets in the intestine. The purpose of this study was 
to discuss the association of fungal flora with IBD and 
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review the articles connecting the gene polymorphisms 
with intestinal mycobiota in IBD cases.

Anti‑Saccharomyces cerevisiae antibody
The first sparks of fungi role in IBD pathogenesis flared 
by detecting elevated levels of anti-Saccharomyces cer-
evisiae mannan antibodies (ASCA) in the sera of IBD-
affected patients since the early 90 s [19, 20]. A twin study 
in 2005 has detected ASCA in CD cases more frequently 
compared with healthy controls [21]. ASCA was also 
found commonly in CD patients with a positive family 
history of IBD [22] and even in unaffected relatives of CD 
patients [23]. ASCA was not only detected in answer to 
Saccharomyces antigens but also in response to Candida 
albicans or the presence of anti-β2 glycoprotein I anti-
bodies in CD patients [24, 25]. Marrakchi et al. revealed 
a positive correlation of caspase recruitment domain-
containing protein 15 (CARD15)/nucleotide-binding oli-
gomerization domain-containing protein 2 (NOD2) gene 
mutation, an important intracellular pattern recognition 
receptor (PRR) that is expressed by dendritic cells (DCs), 
macrophages, and IECs [26], with ASCA expression in 
IBD-affected patients [27].

IBD affecting intestinal mycobiota
In addition to animal studies, some articles are conveying 
the alteration of intestinal mycobiome in human subjects 
with IBD. Ott et  al. first described significantly higher 
fungal diversity in patients with CD in comparison with 
healthy controls, albeit no disease-specific fungal spe-
cies were present in the CD and UC group [28]. Ever 
since, many studies have consistently shown an elevated 
abundance of Candida sp. in IBD fecal samples [29–31]. 
Lewis et al. have reported an increased amount of S. cer-
evisiae [29], whereas Hoarau et al. reported a reduction 
in intestinal S. cerevisiae abundance in IBD patients [31]. 
Another study in 2009 reported a significantly elevated C. 
albicans population obtained from fecal samples of CD 
patients (44%) and their healthy relatives (38%) compared 
to healthy controls [22]. Li et  al. assessed 19 patients 
with active CD and 7 healthy individuals and discovered 
increased fecal fungal richness and diversity in C. albi-
cans, Aspergillus clavatus, Cryptococcus neoformans, and 
a decrease in S. cerevisiae in CD patients. The diversity of 
the fecal fungal community was also positively correlated 
with serum C-reactive protein level and the CD activity 
index [13]. Another study in 2016, revealed a significant 
increase in global fungal load in both inflamed and non-
inflamed mucosa compared with healthy subjects (HS). 
However, no significant differences in fungal diversity 
were observed between the groups [12].

Unlike most similar articles, Chehoud et  al. demon-
strated pediatric IBD to be associated with reduced 

fungal diversity in the host gut microbiota. Specific Can-
dida taxa were also found to have increased abundance in 
the IBD samples [30]. An additional study with de-novo 
pediatric IBD cases revealed a shift from the Ascomy-
cota-predominant mycobiota in HS to a different fun-
gal spectrum with a predominance of Basidomycetes in 
patients with de-novo IBD without the conflicting impact 
of antibiotics or immunosuppression [32]. Later, another 
study investigated the possible fungal dysbiosis index in 
IBD; the fecal fungal composition of 235 patients with 
IBD and 38 HS showed an increased Basidiomycota-to-
Ascomycota ratio that was dramatically higher in patients 
with IBD flares compared to patients in remission and 
HS [8]. There was also a negative correlation between the 
abundance of S. cerevisiae and C. albicans in fecal sam-
ples of IBD subjects, suggesting a competitive environ-
ment between these two species in the gut [8, 33]. The 
study also described a complex fungal-bacterial interac-
tion in the fecal composition of subjects [8].

As opposed to Sokol and Mukhopadhya et al., Qiu and 
colleagues did not detect any significant difference in the 
abundance of Ascomycota, Basidiomycota, and the ratio 
of Ascomycota-to-Basidiomycota between the HS and 
UC patients. However, there was a prominent variation 
in the abundance of Aspergilli between the groups [11]. 
A recent report studied the cultivable intestinal myco-
biota presented in feces obtained from 34 pediatric CD 
patients, 27 pediatric UC patients, and 32 healthy chil-
dren. The authors observed increased load of S. cerevisiae 
and Candida sp. in IBD patients, which was in line with 
previous studies. Likewise, Di Paola et al. concluded that 
the presence of S. cerevisiae was associated with a favora-
ble intestinal environment for beneficial bacterial genera, 
such as Faecalibacterium; whereas the absence of normal 
fungal flora or presence of unusual fungal species were 
conjugated with the presence of potential pathogenic 
bacteria that might lead to IBD [34]. The latest article by 
Nelson et  al. reported an increased abundance of Can-
dida sp. and a decreased Basidiomycota-to-Ascomycota 
ratio, in contrast to the previous literature, in CD cases 
[35]. Of note, the discrepancies between these studies 
might stem from different fungal extraction methods. In 
this regard, we provided additional information for these 
studies, including the fungal extraction method and the 
sample source, in Table 1.

Innate immunity against fungi
Several genetic polymorphisms have been detected in 
IBD over the years [15, 36]. The connection between 
various genetic polymorphisms with bacterial species in 
IBD patients has been widely studied [37–39]. Increased 
susceptibility to systemic fungal complications, such as 
candidemia was linked to polymorphisms of Interleukin 
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10 (IL-10) (rs1800896) [40], Toll-like receptors 1 (TLR-1) 
(rs5743611, rs4833095, rs5743618) [41], Toll-like recep-
tors 2 (TLR-2) [42], caspase recruitment domain-con-
taining protein 9 (CARD9) (G72S,R373P,Q295X) [43, 
44], Toll-like receptors 4 (TLR-4) (rs4986790,rs4986791) 
[45], and Dectin-1 [46] since 2006. Chronic mucocuta-
neous candidiasis is also related to Toll-like receptors 3 
(TLR3) (rs3775291) and Dectin-1 mutations [46–48]. 
Gene polymorphisms targeting innate immunity may 
play an important role in IBD. Although studies aiming at 
the role of intestinal fungi pathogenesis in IBD are scarce, 
studies focusing on innate immune pathways against 
intestinal bacteria and their inflammatory consequences 
have successfully revealed important roles for innate 
immunity in IBD. Similarly, fungal recognition in the 
gut may be also regulated by innate immunity [49]. Four 
main types of innate immune receptors that can recog-
nize fungi through fungal Pathogen-associated molecu-
lar patterns (PAMPs) are TLRs, C-type lectin receptors 
(CLRs), NOD-like receptors (NLRs), and galectin 3 on 
antigen-presenting cells [50]. The most studied class are 
the CLRs which include Dectin-1, Dectin-2, Dendritic 
cell-specific intercellular adhesion molecule-3-grabbing 
non-integrin receptor (DC-SIGN), Macrophage induc-
ible Ca2+-dependent lectin receptor (MINCLE), and 
the Mannose Receptor (MR). Additionally, some CLRs 
can interact with TLRs to recognize fungi [51]. The 
β-glucan is the main PAMP that can be recognized by 
Dectin-1, although Dectin-1 can also recognize uniden-
tified bacterial and endogenous ligands [52]. Dectin-2 
has been recently shown to be the functional receptor 
for α-mannans and to be implicated in anti-bacterial 
immunity [53]. The α-mannose is also strongly suggested 
to be Mincle’s ligand, which has been implied in anti-
mycobacterial immune activity [54]. The fractalkine 
receptor (CX3CR-1) expressed by intestinal-resident 
mononuclear phagocytes (MNPs), were also character-
ized to have a role in initiating immune responses against 
fungi [55]. Through fungal recognition, these pathways 
initiate the inflammatory cascade by predominantly 
driving the immune responses through spleen tyrosine 
kinase (SYK)-dependent, SYK-independent, and eventu-
ally NF-κB signaling pathway towards T helper 1 (TH1) 
and/or T helper 17 (TH17) immunophenotypes [56]. The 
brief signaling cascade leading to intestinal inflammation 
is available in Fig. 1.

Intestinal mycobiota‑genotype association
As Table 2 represents, here, we concentrated on articles 
reporting the mutations of innate immunity components 
and resulted in the gut mycobiome alteration. In a recent 
article, Limon et  al. expressed that colonization of the 
colonic mucosa with Malassezia restricta, a commensal 

fungus typically found on the skin, might increase IBD 
severity in patients with CARD9S12N risk allele. They 
found out that the CARD9S12N variant induces a potent 
pro-inflammatory cytokine response against M. restricta 
in IBD [57]. By examining the SYK-CARD9 signaling 
axis and gut fungi, Malik et  al. also demonstrated the 
decreased occurrence of Ascomycetes along with eleva-
tion of Saccharomycetes in Card9−/− mice. They implied 
that a normal inflammasome assembly in an unperturbed 
SYK-CARD9 signaling axis led to protection against coli-
tis and colon cancer and also promoted T cell-mediated 
anti-tumorigenic responses; thereby indicating that a 
healthy gut mycobiota could prevent the development of 
IBD [58]. According to Lamas et al., the fungal microbi-
ota of wild type and Card9−/− mice with induced-colitis 
mainly were members of the Ascomycota, Basidiomycota, 
and Zygomycota phyla. However, there were different 
measurements at the days 0, 7, and 12, and both groups 
reached a peak at day 7 that was higher in Card9−/− 
mice. On day 7, Card9−/− mice showed decreased fecal 
Ascomycota, increased fecal Basidiomycota, and Zygomy-
cota communities [59].

CX3CR-1 T280M (rs3732378) is a common polymor-
phism that has been previously detected in extra-intes-
tinal inflammatory diseases [60, 61]. In 2018, Leonardi 
et al. described that CX3CR1 + MNPs not only modifies 
adaptive immune responses to intestinal fungi and con-
trols the mycobiota during experimental colitis in animal 
models (without changing bacterial communities), but 
is also connected with a decrease in antifungal antibody 
responses in CD patients. They concluded that intestinal 
mycobiota and CX3CR1-dependent immune responses 
might provoke extra-intestinal manifestations of inflam-
matory diseases [62]. Elevated antifungal antibodies 
detected in patients with alcoholic liver disease, Graves’ 
disease, spondyloarthritis, and systemic lupus erythema-
tous corroborate this hypothesis [63]. Finally, the article 
provided evidence for CX3CR1 + MNPs as a mediator 
between gut mycobiome and both local and systemic 
immunity [55].

A previous study was conducted by Sokol et  al. to 
examine the correlation between host genotype and 
fungal microbiota in IBD patients. The ten most sig-
nificant connections between IBD-associated fungi 
taxa and single-nucleotide polymorphisms (SNPs) 
were as follows: Malassezia sympodialis associa-
tion with Dectin-1 (rs2078178, rs3901533), TLR1 
(rs4833095, rs5743618), and Mincle (rs10841845); 
S. cerevisiae with CARD9 (rs10781499) and TLR3 
(rs3775291); Ascomycota with DC-SIGN (rs2287886) 
and TLR1 (rs5743611); and Basidiomycota with TLR1 
(rs5743611). They also provided evidence support-
ing the negative correlation of M. sympodialis fecal 
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Fig. 1  The cascade of innate immune response against intestinal fungi. Several fungal cell wall polysaccharides initiates immune responses, 
Dectin-1 binds β-glucans, dectin-2 binds α-mannans, and Mincle attaches the glycolipid trehalose-6,6-dimycolate (TDM), trehalose-6,6-dibehenate 
(TDB), and α-mannose residues. DC-SIGN binds N-linked mannans. Dectin-1, dectin-2, and mincle begin intracellular signaling through the SYK 
activation. RAF-1 as an SYK-independent activator of NF-κB pathway actuated by DC-SIGN and dectin-1. NF-κB pathway leads to TH1 and TH17 
activations and subsequent cytokine production. CX3CR-1 is expressed by intestinal-resident mononuclear phagocytes (MNPs) and participate in 
fungal recognition

Table 2  Intestinal mycobiota-genotype association in IBD

ITS 1,2, Internal transcribed spacer 1, 2; CARD9; CARD9, Caspase recruitment domain-containing protein 9; TLR3, Toll-like receptors 3; TLR1, Toll-like receptors 1; 
CLEC4D, C-Type Lectin domain containing 4D; CLEC7A, C-Type Lectin domain containing 7A; DC-SIGN, Dendritic cell-specific intercellular adhesion molecule-3-
grabbing non-integrin receptor; MINCLE, Macrophage inducible Ca2+-dependent lectin receptor; NOD2, Oligomerization domain-containing protein 2; M. restricta, 
Malassezia restricta; M. sympodialis, Malassezia sympodialis; S. cerevisiae, Saccharomyces cerevisiae; C. tropicalis, Candida tropicalis; sp., species

Animal/ human sample Fungal extraction Mycobiota-genotype References

CD patients Mucosal-tissue The ITS1 rDNA sequencing M. restricta (CARD9 S12N alleles) Limon et al. [57]

Card9−/− mice feces 18S ITS rDNA sequencing Decreased Ascomycota, elevation of Saccharomycetes (CARD9) Malik et al. [58]

Card9−/− mice feces ITS2 rDNA sequencing Ascomycota, Basidiomycota, and Zygomycota (CARD9) Lamas et al. [59]

CX3CR1−/− mice, CD patients enzyme-linked immuno‑
sorbent assay (ELISA)

Decreased antibody production against Candida sp. (CX3CR-1) 
[CX3CR-1 T280M (rs3732378)]

Leonardi et al. [62]

IBD patients Fecal samples ITS2 rDNA sequencing Positive correlation: M. sympodialis [Dectin-1 (rs2078178, 
rs3901533)],[TLR1 (rs4833095, rs5743618)],[Mincle (rs10841845)]

S. cerevisiae [CARD9 (rs10781499)], [TLR3 (rs3775291)]
Ascomycota [DC-SIGN (rs2287886)], [TLR1 (rs5743611)]
Basidiomycota [TLR1 (rs5743611)]
Negative correlation: M. sympodialis [Dectin-1 (rs2078178, ‘T’allele 12)]
S. cerevisiae [CARD9 (rs10781499, ‘A’ allele 21)]

Sokol et al. [8]

Clec4d−/− mice feces 18S rDNA sequencing C. tropicalis (CLEC4D) Wang et al. [64]

Clec7−/− mice feces ITS1-2 rDNA sequencing Increased Candida and Trichosporon sp. Decreased nonpathogenic 
Saccharomyces sp.

Iliev et al. [66]

CD patients Fecal sample ITS1 rDNA sequencing No differences were evident with NOD2 variances Nelson et al. [35]
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abundance with Dectin-1 SNP (rs2078178, ‘T’allele 12) 
in medically refractory UC; M. sympodialis was also 
decreased during the IBD flares in patients. Moreover, 
the IBD-associated CARD9 variation (rs10781499, ‘A’ 
allele 21) was inversely correlated with the fecal abun-
dance of S. cerevisiae. Lastly, they reported a decrease 
in fungal biodiversity only in UC and CD patients 
without ileal involvement [8].

Wang et  al. described the role of Dectin-3 (a fam-
ily member of CLRs) in recognizing Candida. tropi-
calis in experimental-colitis pathogenesis for the first 
time. They observed that C. tropical increased the 
disease burden in Clec4d−/− mice during the induced 
colitis. Since the C-Type Lectin domain contain-
ing 4D (CLEC4D) is the encoding gene for Dectin-3, 
Clec4d−/− mice were more susceptible to induced 
colitis due to the activation of the NF-κB signaling 
pathway64.

The impact of NOD2 variants on the intestinal bac-
terial community in CD patients has previously been 
described [65]. Thus, Nelson et  al. investigated the 
presence of NOD2 polymorphisms in CD patients and 
its relation with fecal fungal diversity but did not find 
any significant correlation between NOD2 variants 
and specific intestinal fungi community [35].

Dectin-1 is the most important fungal PRR expressed 
by innate immune cells, such as macrophages, den-
dritic cells, and neutrophils. C-Type Lectin domain 
containing 7A (CLEC7A) is the gene that encodes Dec-
tin-1. Clec7−/− mice with induced colitis had increased 
proportions of opportunistic pathogenic fungi includ-
ing Candida sp. and Trichosporon sp. along with a 
decreased frequency of nonpathogenic Saccharomyces. 
Iliev et al. identified a significant association between 
CLEC7A SNP (rs2078178) and patients suffering 
from medically refractory UC and delineated the role 
of Dectin-1 as a fungal receptor during severe forms 
of colitis [66]. Other gene polymorphisms were also 
described to influence Dectin-1-associated immu-
nity in IBD [16, 67]. Among these genes, LRRK2 has 
also been described as the familial Parkinson’s dis-
ease genetic risk factor. Multiple variations in LRRK2 
comprising N2081D, rs11175593 LRRK2/MUC19, and 
rs11564258 LRRK2/MUC19 were associated with IBD 
as well [68]. Takagawa et  al. suggested an increase in 
severity of colitis, mediated by increased Dectin-1–
induced immunity, in (rs11564258) LRRK2/MUC19 
polymorphism carriers [16]. Noteworthily, this vari-
ance (rs11564258) had the second-highest odds ratio 
in IBD patients of the European population [69]. Fur-
ther studies are required to identify the intestinal myc-
obiota in the patients carrying this mutation.

Conclusion
In summary, the role of intestinal fungal mycobiota in 
IBD pathogenesis and severity index have been quite 
underrated. This review emphasizes that a majority of 
IBD-affected patients had increased diversity and rich-
ness of intestinal mycobiome, higher abundance of C. 
albicans and Basidiomycota-to-Ascomycota ratio, and a 
decreased proportion of S. cerevisiae despite a few con-
tradictory results in other studies.

It is widely known that innate immunity takes part in 
intestinal fungal recognition and mutations in innate 
immunity mediators are linked to IBD pathogenesis. 
Even so, few articles aimed to examine the connection 
between gene polymorphisms and intestinal fungal dys-
biosis in IBD.

Although DSS-induced colitis is a well-established 
experimental murine model with much resemblance 
to human IBD [70], we were able to find only three 
non-murine studies containing mycobiota-genotype 
data related to IBD patients. Additional evidence is 
needed to determine whether different gene polymor-
phisms can alter intestinal mycobiome or whether this 
information would be of use in providing novel insight 
into IBD pathogenesis. Therefore, our purpose was to 
highlight the importance of the matter and draw atten-
tion to this underappreciated aspect of IBD-associated 
research.
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