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Abstract

Neutrophil extracellular traps (NETs) are extracellular reticular fibrillar structures composed of DNA, histones, granulins
and cytoplasmic proteins that are delivered externally by neutrophils in response to stimulation with various types

of microorganisms, cytokines and host molecules, etc. NET formation has been extensively demonstrated to trap,
immobilize, inactivate and kill invading microorganisms and acts as a form of innate response against pathogenic
invasion. However, NETs are a double-edged sword. In the event of imbalance between NET formation and clearance,
excessive NETs not only directly inflict tissue lesions, but also recruit pro-inflammatory cells or proteins that promote
the release of inflammatory factors and magnify the inflammatory response further, driving the progression of many
human diseases. The deleterious effects of excessive release of NETs on gut diseases are particularly crucial as NETs
are more likely to be disrupted by neutrophils infiltrating the intestinal epithelium during intestinal disorders, leading
to intestinal injury, and in addition, NETs and their relevant molecules are capable of directly triggering the death of
intestinal epithelial cells. Within this context, a large number of NETs have been reported in several intestinal diseases,
including intestinal infections, inflammatory bowel disease, intestinal ischemia—reperfusion injury, sepsis, necrotizing
enterocolitis, and colorectal cancer. Therefore, the formation of NET would have to be strictly monitored to prevent
their mediated tissue damage. In this review, we summarize the latest knowledge on the formation mechanisms of
NETs and their pathophysiological roles in a variety of intestinal diseases, with the aim of providing an essential direc-
tional guidance and theoretical basis for clinical interventions in the exploration of mechanisms underlying NETs and
targeted therapies.
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NETs have been originally described as the host defense
mechanism that used to capture or kill pathogenic

Background
Neutrophils are the most abundant immune cells and the

fastest recruitment cells in infected or inflammatory sites,
so they constitute the first line of immune defense of the
human body. They have a variety of immune functions,
including phagocytosis, production of reactive oxygen
species (ROS), degranulation and formation of NETs [1].
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microorganisms for neutrophils. It is a kind of reticular
structure where neurophils are released to extracellular
after stimulation and activation. With DNA as its skel-
eton, it is embedded with proteins such as histone (his-
tone, H), myeloperoxidase (myeloperoxidase, MPO),
neutrophil elastase (NE), cathepsin G (CG) and protease
3 (PR3) and so on, which have bactericidal and perme-
ability-increasing effects and some of them were modi-
fied after transformation in the process of forming NETs
[2, 3]. In fact, inhibition of NETs formation increases the
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sensitivity of mice and humans to bacterial infections [4,
5]. However, increasing evidence shows that NETs also
contribute to the aggravation of inflammation [6], the
occurrence of autoimmune diseases [7], the metastasis
and development of cancer [8] and so on. Due to new
detection and imaging methods, the exploration of NETs
have expanded from in vitro observation to in vivo organ
level, and engaged in many specific disease areas, such
as systemic lupus erythematosus, vasculitis, diabetes,
thrombosis and lung injury [9-12]. Recent studies have
found that NETs were related to intestinal diseases. On
the one hand, it can prevent bacterial translocation and
promote the repair of intestinal mucosal injury and plays
an important role in maintaining the stability of intesti-
nal epithelium [13]. On the other hand, excessive NET
formation can also destroy intestinal mucosal barrier
function, damage intestinal epithelium, and play a key
role in the pathological process of a variety of intestinal
diseases [6, 14]. Therefore, in this review, we describe the
latest findings regarding NETs related to intestinal infec-
tion, intestinal inflammation, inflammatory bowel dis-
ease (IBD) and cancer and we hope to clarify the disease
mechanism of drug treatment and develop new diagnosis
and treatment strategies.

Neutrophilic Extracellular Traps (NETs)

In 1996, Takei H first described NETs as a new type of
programmed cell death, which was different from apop-
tosis with nuclear pyknosis and cytoplasmic vacuoliza-
tion, and different from cell necrosis that maintains the
integrity of nuclear membrane. It’s a special mechanism
of cell lysis and death, in which neutrophils show mor-
phological changes, nuclear membrane rupture, nuclear
components released into the cytoplasm, and finally the
plasma membrane broken, resulting in the formation of
NETs outside the cell [15]. In 2004, Brinkmann V rede-
fined NETs as a microbial mechanism involved in cell
death, namely activated neutrophils amplify the effective-
ness of their antibacterial particles by producing a large
network of DNA fibers wrapped in protein particles in a
concentrated area, which contributes to forming physical
barrier to prevent the spread of microorganisms. They
also initially discovered that NETs may have harmful
effects on the host and thereby stimulate autoimmun-
ity, which opens a new field of neutrophil biology [2]. In
the early stage, the process of NET formation is called
NETosis [16]. In the latest expert review, it was empha-
sized that NETosis could not include all forms of NETs
release, and it was recommended to avoid the use of the
term "NETosis" or only in cases where neutrophil death
was apparent, preferably using NETs formation [17]. Like
many host protection mechanisms, NETs may also be a
double-edged sword that can promote or prolong innate
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and acquired immune responses to a variety of diseases
[6, 18]. Plenty of stimulation, such as physical and chemi-
cal stimulation [19, 20], inflammatory cytokines such as
Cb5a and IL-8 [21, 22], and various pathogenic microor-
ganisms and their derivatives [23, 24], determine the dif-
ferent mechanisms of the formation of NETs.

The classical pathway of NET formation requires ROS

PMA stimulated neutrophils produce NADPH oxidase-2
(NOX-2)- dependent reactive ROS which lets neutrophils
release NE referring to the nucleus, where it partially
degrades specific histones and MPO, driving chroma-
tin depolymerization independent of its enzyme activ-
ity [25-27], causing nuclear DNA moving and releasing
out of the cell, and forming a reticular structure [27-29].
It has also been reported that some special stimulation
(including immune complexes) touched neutrophils,
mitochondrial ROS (rather than NOX-2-derived ROS)
can drive similar NETs formation with the assistance of
Ca2+[20, 30, 31]. ROS, whether mediated by NOX or
mitochondria, seems to be essential for the formation
of NETs. Those NET formation takes a long time, usu-
ally lasts for several hours or even exceeds its lifespan
and continues to resist the invasion of bacteria. When
it causes neutrophils death, it is called "suicidal NETo-
sis" [16]. Interestingly, when neutrophils are stimulated
by GM-CSEF, C5a or LPS, mitochondrial DNA (mtDNA),
not nuclear DNA is ejected out of the cell to form NETs
under ROS-dependent condition [32]. In this process, the
lifespan of neutrophils is not affected. These results give
neutrophil mitochondria a new role not only as a ROS
generator, but also as a provider of DNA in the process
of NET formation. In addition, recent studies have shown
that optic atrophyl (OPA1), a mitochondrial inner mem-
brane protein, is essential to the process of NET forma-
tion, and its deficiency causes dysfunction in the release
of DNA from the nucleus of human neutrophils, thus
unable to form NETs [33].

Pathway of ROS-independent NET formation

Although many studies have shown that PMA stimula-
tion can easily form ROS-dependent lytic NETs, the mice
model of skin infection with Staphylococcus aureus or
Candida albicans shows that NET formation can be rap-
idly formed independent of ROS [34, 35]. In the process
of the NET formation, NE translocation to the nucleus
and chromatin depolymerization occur without obvious
rupture of the nuclear membrane. The protein-modified
chromatin was packaged into vesicles merging with the
plasma membrane and nuclear DNA was released out-
side the cell through the vesicle transport mechanism
without destroying the plasma membrane [18, 36]. Even
though how these vesicles were released is not clear, it
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is clear that NETs formation leads to neutrophils main-
tain plasma membrane integrity without affecting their
lifespan, and have the ability to move, chemotaxis, and
phagocytize pathogens [37]. The process without ROS
or NADPH oxidase is uniquely rapid, lasting about 5 to
60 min and requires strict supervision, which was trig-
gered by toll-like receptors (TLR)2 or C3 complements.
Importantly, NETs released without neutrophil death
maintain their normal function [35, 38]. Recent studies
suggest that there is a new mechanism of NETs forma-
tion independent of ROS, that is, bacterial toxins induce
pores on the membrane of host neutrophils [39, 40]. As
we all know, the NET formation is a process independ-
ent of caspase-3. Interestingly, it has been reported that
NE and caspase-11 can process gasdermin D so that its
pore-forming N-terminal forms pores in the nuclear and
granular membranes as well as the plasma membrane.
As mentioned above, it will promote NE migrate to the
nucleus with the help of gasdermin D on the nuclear
membrane, which may be due to the induction of NETs
by calcium channel activation [41, 42].

Signaling pathway in NET formation

Several different signaling pathways have been reported
to play functional roles in NET formation. The first of
these pathways is that PMA, LPS and various bacteria
stimulation activate protein kinase C (PKC) through TLR
and G protein related receptor (GPCRs), and then phos-
phorylate Raf kinase and activate Raf-MEK-ERK pathway
[29, 43]. ERK phosphorylation NADPH oxidase complex
and leads to the production of ROS. At the same time,
neutrophils release NE destroying F-actin and MPO. ROS
acts as a secondary messenger and promotes the trans-
fer of NE and MPO from cytoplasmic granules to the
nucleus, which catalyzing the interpretation of histone
and leading to nuclear chromatin depolymerization [28,
44]. During this period, it is not clear how NE translates
to the nucleus. Some studies have shown that nuclear
membrane disintegration mediated by CDK4/6 may play
an important role in NE nuclear translocation [45]. When
neutrophils were activated, Ca2 + was released into the
cytoplasm in response to the receptor agonist activating
phospholipase C (PLC). PLC hydrolyzes phosphatidylin-
ositol 4-diphosphate (PIP2) on the cell membrane to pro-
duce second messenger inositol triphosphate (IP3) and
diacylglycerol (DAG), which contributes to the activation
of intracellular Ca2+and PKC respectively [46]. In fact,
Ca2+ -assisted peptidylarginine deiminase 4 (PAD4)
in the cytoplasm converts the positive charged arginine
into neutral citrulline in the histone, destroying the elec-
trostatic interaction of DNA- histones, weakening the
skeleton structure and stability of chromatin, and finally
leading to chromatin condensation [47]. In short, nuclear
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chromatin condensation can be achieved not only via
post-translational modification of histone, namely PAD4-
mediated histone citrullination [48] or acetylation [44,
49], but also NE-mediated histone hydrolysis [27, 29, 50].

Next, the rupture of the nuclear membrane is essen-
tial for the removal of nuclear chromatin out of the cell,
and is also related to the source of NETs DNA. Amulic
et al. reported the involvement of nuclear lamin A/C in
NET formation [45]. They found that cyclin-dependent
kinase 4 and 6 (CDK4/6) can control NET formation by
regulating lamellar disintegration and rupture of nuclear
membrane caused by phosphorylation of laminin A/C. In
addition, some microscopic analyses showed that nuclear
lamin B was also involved in the formation of NETs [51,
52]. The phosphorylation and dissociation of lamin B
mediated by protein kinase C alpha (PKC «) is the rea-
son for the disintegration / rupture of nuclear envelope.
Lamin B is extruded from the ruptured nuclear mem-
brane with depolymerized nuclear chromatin and can
be decorated on the surface of extracellular NETs [52].
Interestingly, chromatin condensation and nuclear swell-
ing are the main physical forces driving nuclear mem-
brane rupture [53], which may provide a molecular basis
for lamin kinase-mediated decomposition of the nuclear
layer into the disintegration of nuclear membrane pro-
tein networks. Nuclear expansion forms a physical force
from the inside out, which drives the disintegration of
the nuclear membrane to expand until the whole nuclear
membrane breaks, squeezing out the depolymerized
nuclear chromatin. Finally, neutrophils release DNA out-
side the cell, and various proteins with bactericidal activ-
ity are connected to the DNA skeleton to form NETs.

NETs in intestinal infection

There are many species of bacteria, fungi and several pro-
tozoan parasites associated with the induction of NET
formation in the human intestinal tract [28, 54]. There is
no doubt that the defense function of NETs against the
invasion of pathogenic microorganisms [2]. However,
Crane et al. proposed that in the model of bacterial enter-
itis, NETs help enteropathogenic Escherichia coli (EPEC)
and Shiga-like Escherichia coli (STEC)attach to the
intestinal mucosa by enhancing the biofilm function of
microorganisms [55]. These findings hint that NETs play
a dual role in intestinal infections. However, its mecha-
nism has not been fully elucidated. Table 1 summarizes
the production or changes of NETs when tissues or cells
are infected by different microorganisms and the effects
of their main components on tissues or cells. More stud-
ies are needed to elucidate whether the changes in NETs
during infection are due to the infection itself or to
experimental manipulation.
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NETs and bacterial clearance

NETs have the proteolytic activity of NE. In infectious
inflammation, such as methicillin-resistant Staphylococ-
cus aureus (MRSA) infection, it has been observed that
NETs can destroy the tight junction between endothelial
cells and increase vascular permeability [56]. Moreover,
this experiment shows that the absence of essentia MRSA
toxins still caused NETs production and the consequent
liver damage, which reminds us that in the future treat-
ment of infectious diseases should not only remove
bacterial toxins but prevent NETs formation in order to
completely alleviate infectious injury. Diffusely adher-
ent Escherichia coli expressing Afa/Dr fimbriae strain
C1845 could also induce NETs to damage the F-actin
cytoskeleton of human enterocyte-like cells and destroy
the intestinal epithelium and that this deleterious effect
is prevented by inhibition of protease release [57]. In
order to avoid the capture of NETs, bacteria also adapt
to other escape mechanisms. For example, Pseudomonas
aeruginosa is more resistant to NETs than Staphylococcus
aureus or Escherichia coli, resulting in less NET forma-
tion. There are several factors. Firstly, P. aeruginosa is the
production of a microbial secreted DNase that degrade
NETs DNA, which in turn restrict NETosis through
non-representational mechanisms. Alternatively, DNA
can induce expression of the arn or spermidine synthe-
sis genes in P. aeruginosa, which in turn protect P. aer-
uginosa from NET-induced oxidative damage [58]. It
suggests that P aeruginosa can produce new immune
escape mechanisms by sensing and defending against
NETs. Escherichia coli also inhibit neutrophils producing
ROS, form NETs by producing enterobactin (Ent), which
is a catecholamine iron carrier used to isolate intracel-
lular iron and unstable iron pools in neutrophils [59],
which means the production of siderophore by E. coli
and other bacteria may be a key mechanism that allows
them to evade NET-mediated killing. In addition, the
culture of intestinal bacteria in mice infected with Cit-
robacter rotarius showed that different bacterial subsets
also had the ability to mobilize neutrophil oxidative out-
breaks and initiate NET formation [60]. Staphylococcus
aureus induces NETs by recruiting neutrophils during
sepsis, and these NETs bind firmly to the hepatic sinu-
soids through histone-vWF interactions [35]. In 2013,
the interaction between Vibrio cholerae and NETs was
reported for the first time. It indicated that Vibrio chol-
erae can induce NET formation when it comes into con-
tact with neutrophils. In turn, Vibrio cholerae secretes
two extracellular nucleases Dns and Xds to rapidly
degrade the DNA component of NETs in order to avoid
and adapt to the presence of NETs. In other words, Dns
and Xds mediate the escape of Vibrio cholerae from NETs
and reduce the extracellular activity of NETs [61].
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NETs and intestinal amebae and fungal infection
Neutrophils are important host effector cells against
amebae lysis parasites (Echinococcus histolytica tropho-
zoites) [62, 63]. It was demonstrated that neutrophils
activated by TNF-a and IFN-c were able to kill E. histo-
lytica trophozoites, with MPO binding to the trophozo-
ite plasma membrane and killing these invaders [64]. The
part that NETs play in this process is not yet known. In
2016, Ventura-Juarez et al. for the first time identified
that in vitro, while in direct encounter with Echinococcus
histolytica trophozoites, neutrophils lost their circular
morphology and integrity and variable length NET for-
mation was observed which trapped, immobilized and
fragmented E. lysis trophozoites. After neutrophils were
pretreated with deoxyribonuclease I (DNase I), despite
the fact that the nuclei of neutrophils contained his-
tones, MPO and concentrated chromatin, they did not
release NETs and the E. histolytica trophozoites did not
show any damage, which indicates that released NETs
from neutrophils have amebae killing effect [65]. In addi-
tion, it was demonstrated quantitatively that neutrophils
treated with amebae trophozoites not only rapidly form
NETs but also emerge with the simultaneous presence
of nuclear and mtDNA. It is of interest that the forma-
tion of NETs was also found to be dependent on amebae
activity, as heat-inactivated or paraformaldehyde-fixed
amebae failed to induce NETs and, more interestingly, no
ROS production was detected during neutrophil-amebae
interaction, implying that amebae -induced NETs pro-
duction is non-ROS-dependent [66].

The action of neutrophils on fungi bears a strong
resemblance to that of amebae, using NETs to capture
and destroy mycelium that cannot be engulfed by phago-
cytes [67]. Candida albicans hyphae have the capacity to
trigger the formation of NETs, which are then trapped
and killed by NETs, whereby the antifungal activity of
NETs is mediated by calprotectin [68, 69]. Similarly,
Aspergillus fumigatus mycelium can provoke the for-
mation of NETs, which trap and inhibit fungal growth,
possibly due to deprivation of the essential nutrient
Zn2+required by the fungus. However, in this case,
NETs are not sufficient to kill Aspergillus fumigatus,
as the NETs-mediated growth inhibition is eliminated
by the addition of Zn2+[70]. Candida albicans were
NADPH oxidase-dependent. However, in a model of
Candida albicans peritonitis, Wu et al. found a pathway
for NETs independent of NADPH oxidase and similar to
the chemically activated pathway, and they also discov-
ered that Dectin-2-mediated PAD4-dependent NET for-
mation in vivo prevented the spread of Candida albicans
from the peritoneal cavity to the kidney [34, 71]. Never-
theless, PAD4 also seems not always to be required for
NETs formation, and Guiducci et al. found that PAD4
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is not required for antifungal immunity in mucosal and
systemic Candida albicans infections, despite the fact
that Candida albicans readily induces PAD4-dependent
histone citrullination of neutrophils [72]. While most
research on NETs and fungal-associated diseases has
focused on candidiasis and fumonis, recent studies have
illustrated that NETs also act in other fungal infections.
For example, NETs can be seen in corneal scrapings from
patients with fungal keratitis, a vision-threatening infec-
tion caused by a variety of fungi, including Aspergillus,
Fusarium, Candida and Streptomyces [73]. The same
applies in the case of A. fumigatus conidia infection [72].
In addition, it was recently reported that in a model of
DSS-induced leaky gut lupus, intestinal fungi boosted
the production of NETs, causing intestinal translocation
of organic molecules and synergistically exacerbating the
activity of lupus [73].

Large pathogens such as fungi and amebae activate
the release of NETs from neutrophils in a similar sign-
aling pathway, while at the same time the pathway of
NETs release varies depending on the infecting pathogen,
which may be relevant for clinical cure. Yet, more mecha-
nisms of NETs release in response to amoebic and fungal
infections are poorly understood and need to be further
explored in the future.

NETs and intestinal inflammation

Until now, numerous studies have documented that the
expression of NETs is increased in inflamed intestinal
mucosa, feces or blood, and that NETs abundance posi-
tively correlates with the degree of inflammatory intes-
tinal disease, and that destruction of NETs by DNase I
ameliorates the systemic inflammatory response, intes-
tinal epithelial cell apoptosis and intestinal injury [74].
Table 2 summarizes studies and therapeutics used to tar-
get NETs in intestinal inflammation.

NETs and sepsis

In the development of sepsis, neutrophils migrate from
circulating blood to infected tissues and mediate the for-
mation of NETs, which kill pathogens. However, NETs
component histones and NEs are as well toxic to host epi-
thelial and endothelial cells. In an animal model of bacte-
rial sepsis, DNase administration reduced organ damage
and raised survival rates [35], and yet, DNase is admin-
istered prophylactically, which is impractical to patient
care, and to further test this conclusion, the use of PAD4-
/- mice to prevent the forming of NETs has shown to be
protective against LPS-induced endotoxaemia, which
indicates that NETs do exacerbate damage in sepsis [75].
Intriguingly, recombinant human DNase I administration
in a model of sepsis with cecum ligation and perforation
(CLP) depleted NETSs, impeded early immune responses
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in mice and delayed bacterial clearance, thereby exacer-
bating pathological changes in lungs and liver [76]. This
serves as a reminder that further studies are needed to
document the utility of PAD4 and DNase I in sepsis. Sep-
tic patients frequently present with intestinal dysfunction
and lesions, and neutrophils infiltrate and release NETs
in the intestine of LPS-induced endotoxaemic rats. In
sepsis, lipopolysaccharide (LPS) induces PAD4 activation
and NET formation via the PAD-NETs-CitH3 pathway,
leading to altered permeability of pulmonary vascular
endothelial cells [77]. NETs contribute to sepsis-induced
intestinal barrier dysfunction through modulation of
the TLR9-mediated endoplasmic reticulum (ER) stress
pathway, which encourages inflammation and apoptosis,
and suppression of the TLR9-ER stress signaling path-
way attenuates NETs-induced intestinal epithelial cell
death [78]. Indeed, traumatic hemorrhagic shock can also
instigate the NETs formation in the intestine, disrupting
intestinal tight junction proteins, and the clearance of
NETs by DNase I mitigates intestinal injury [79].

Excessive activation of neutrophils, however, can facili-
tate the formation of immune thrombi and even provoke
disseminated intravascular coagulation (DIC), which
can impair the microcirculation. A vivo imaging study
revealed that the NETs-platelet-thrombin axis fosters
intravascular coagulation in the liver during endotoxae-
mia [75] and that Poly P, a potent activator of thrombin,
and NETs work together to promote DIC [80], which
would explain why DNase or PAD4 deficiency inhib-
its net formation to reduce tissue damage, and blocking
NETs and inhibiting intravascular coagulation poten-
tially ameliorates organ reperfusion and attenuates organ
damage. Certainly, NETs trigger pro-thrombotic and
pro-coagulant platelet-mediated responses through inter-
actions with TLR4, and LPS activation of platelets could
elicit platelet-dependent tissue factor procoagulant activ-
ity (TF-PCA) and boost thrombin production in a TLR4-
dependent manner, and as a critical receptor, TLR4 on
platelets is likely to be an influential element in septic
DIC [81]. Increased P-selectin expression and increased
platelet-neutrophil and monocyte aggregation have also
been found in COVID-19 patients, which is associated
with thrombotic complications [82]. Vascular endothe-
lial cells have a significant effect in sepsis thrombosis and
NETs magnify the endothelial dysfunction associated
with thrombosis [83, 84]. Thus, the interaction of NETs
with platelets, complement and endothelium mediates,
to some extent, the sepsis immune thrombosis.

Actually, NETs have become a therapeutic target in
critical diseases [85], and real-time monitoring of the
extent of NETs potentially could be beneficial in clini-
cal practice for critically ill patients. Hu et al. observed
increased formation of the NET structure and elevated
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expressions of NET-associated proteins in intestines of
critically ill surgical patients and early enteral nutrition
preserved intestinal barrier function through reduc-
ing the formation of NETs in critically surgical patients
[86]. Using a novel assay in a prospective cohort study of
341 ICU patients and identified a significant correlation
of NETs formation with disease severity, that is, robust
NETs formation was found in sepsis and independently
predicted the occurrence of DIC and mortality. They also
confirmed that IL-8 is the main factor driving NETs for-
mation through the MAPK pathway, and inhibition of
IL-8 or MAPK can significantly reduce NETs formation.
Therefore, this test can provide information about NETs
forming ability and its inducing factors in vivo, thus guid-
ing clinical management, identifying patients’ targeted
therapy and personalized NETs inducing factors, and
then improving the treatment targeting strategy of ICU
patients [87].

The outcome of sepsis depends on early understanding
and intervention, so the clinical evaluation of NETs func-
tion may be a valuable biomarker for early diagnosis of
sepsis.

NETs and intestinal ischemia reperfusion injury

Intestinal ischemia reperfusion (IR) injury is a phenom-
enon in which intestinal injury is aggravated by resto-
ration of blood flow based on intestinal ischemia from
various causes, and even irreversible injury occurs, often
after shock, trauma, acute intestinal ischemia and intes-
tinal transplantation [88]. Following clinical occurrence
of intestinal I/R injury, it often gives rise to intestinal
bacterial translocation, endotoxin emigration, and mas-
sive release of inflammatory cytokines leading to liver,
kidney, lung, and other multi-organ damage, which in
turn causes systemic inflammatory response, systemic
multi-organ dysfunction syndrome, multi-organ and tis-
sue failure, and even death [89]. For many years, neutro-
phils have been the leading cause of inflammation caused
by IR injury. For years, neutrophils have been responsible
for the inflammation caused by IRL. During mesenteric
infarction, neutrophil recruitment determines the extent
of IR injury.

The first study regarding ischemia—reperfusion and
the role of NETs, Oklu et al. established an IR model on
the unilateral hind limb of mice and demonstrated the
possible involvement of NETs in myofiber injury [90].
Inspiration from this finding inspired later investigators
to focus on IR in other organs. Boettcher et al. demon-
strated firstly in an experimental model of intestinal IR
injury that neutrophils released extracellular DNA in
the form of NETs, which were involved in organ dam-
age, and DNasel treatment diminished the inflammatory
response, including NETs, without increasing the risk of
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bleeding, while extracellular DNA-targeted therapy also
improved the regression of intestinal IR injury in neona-
tal rats [91]. Above results imply that targeting extracel-
lular DNA possibly provides a safe therapeutic approach
for future patients with intestinal infarction. Wang et al.
further evaluated the therapeutic value of DNase-1 in
a rat model of intestinal IR injury based on exploring
whether NETs engage in the pathogenesis of intestinal IR
injury. The results indicated that extracellular DNA was
readily detected in rat serum after 1 h of ischemia and
2 h of reperfusion, and that DNase-1 treatment obviously
attenuated the inflammatory response, restored intesti-
nal barrier integrity, and enhanced the expression of tight
junction proteins [92], which offered further evidence
that DNase-1 has the potential to be an effective treat-
ment for attenuating intestinal IR injury.

Recently, an increasing number of reports have proved
that the gut commensal microbiota serves an essential
role in mitigating organismal injury in acute mesen-
teric ischemia, but whether the specific mechanisms are
related to NETs has been incompletely elucidated. To
investigate the impact of intestinal microbiota in acute
mesenteric infarction, Ascher et al. found in a mouse IR
model that neutrophils with more recruitment and higher
reactivity and markedly increased NETs were found in
conventionally reared mice treated with antibiotics or in
germ-free mice, whereas in conventionally reared mice
or mice colonized with minimal microflora altered by
Schaedler’s flora, NETs were attenuated by a mechanism
possibly related to activation of the TLR4 /TRIF (TIR-
domain-containing adapter inducing interferon-p) sign-
aling pathway, implying that the gut microbiota inhibits
the high reactivity of mesenteric I/R-injured neutrophils,
reduces the NETSs, and is protective against IR in mice
[93]. Nonetheless, knowing that short chain fatty acids
(SCFAs) are mainly produced by bacterial fermentation
of dietary fiber and is a catabolic product of the intestinal
flora. Research has found that SCFAs stimulate the for-
mation of NETs in vitro and that the result was probably
mediated partly by the free fatty acid 2 receptor (FFA2R)
expressed in neutrophils [94]. Similarly, Li et al. evaluated
the role of microbiota metabolite butyrate in modulat-
ing NETs in IBD in a mouse DSS model and found that
butyrate improved mucosal inflammation by ameliorat-
ing neutrophil-associated immune responses including
inhibition of NETs [95].

Regarding the additional link between the forma-
tion of NETs and gut microbes, a study by Liang et al. in
2019 revealed that oral administration of Staphylococ-
cal nuclease (SNase), a nuclease that degrades DNA or
RNA, was capable of effectively degrading NETs in vitro
and in vivo, thereby improving intestinal barrier func-
tion. More importantly, SNase alleviated the intestinal
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inflammatory microenvironment and averted the devel-
opment of type 1 diabetes (T1D) in non-obese diabetic
(NOD) mice by altering the species richness and com-
position of the intestinal microbiota of NOD mice [96].
Recently, a study has also shown that dominant microbes
(Acetatifactor, Coprococcus2, Lachnoclostridium_5 and
Lachnospiraceae_FCS020_group) in NOD mice had a
positive correlations with neutrophils and could possibly
affect T1D via NETs [97], which inspires us that further
works concerning the specific mechanisms of the inter-
action between intestinal microbiota and NETSs require
more studies to be revealed.

Apart from local injury, intestinal IR injury can also
harm other distant compartment organs, including the
liver, and the process mainly occurs via histone, network
formation and cytokine storm induction [11]. Hayase
et al. discovered that accumulation of histones and
NETs was found in the liver and intestine after intesti-
nal IR occurred in mice, as well as that process exacer-
bated distant liver injury. Recombinant thrombomodulin
attenuated the liver injury caused by IR by inhibiting the
accumulation of histones and NETs in the liver [98].

NETS and necrotizing enterocolitis

Necrotizing enterocolitis (NEC) is a devastating gastro-
intestinal disease affecting preterm infants. Character-
ized by intestinal inflammation and leukocyte infiltration,
which often progresses to necrosis, perforation, and,
in severe cases, death [99]. Neutrophils, the first-line
responders of the neonatal innate immune system against
infection, can eliminate pathogens through phagocyto-
sis, degranulation, and formation of NETs. However, it is
widely known that excessive NET formation or delayed
clearance of NET components (especially histones)
causes pathological conditions such as sepsis, throm-
bosis and transfusion-related acute lung injury [75, 87,
100]. Therefore, whether NETs offer protection against
abnormal intestinal pathogens or contribute to pathology
in models of NEC that require intestinal infection is still
unclear.

Chaaban et al. found that circulating nucleosomes are
present in premature human infants with NEC and pres-
ence of neutrophil extracellular traps in human NEC
ileum. Notably, Cl-amidine treatment almost doubled
the mortality of the pups exposed to dithizone/Kleb-
siella (DK)-induced NEC mice model, and intestinal
mucosal tissue sections showed moderate to severe dam-
ages. In addition, IL-1f levels, blood BUN, creatinine
and ALT were remarkably elevated in NEC 4 Cl-amidine
compared with NEC pups, suggesting that inhibition of
NETs appears to further exacerbate systemic inflamma-
tion and organ damage in mouse NEC and is likely due
to increased bacteremia [101]. Surprisingly, in a study
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by Vincent et al. yielded seemingly contradictory find-
ings by establishing a NEC mouse model different from
DK-NEC model established by Chaaban et al. They found
that serum circulation free DNA (cfDNA) was positively
correlated with clinical manifestations of NEC, and
markers of neutrophil activation and NETs were sig-
nificantly increased in animals suffering from NEC and
in human samples compared to controls [102]. Preven-
tion of NET formation in mice by suppressing PAD sig-
nificantly reduced NEC-induced mortality, tissue lesions
and deterioration in mice. What’s more interesting is
that immunohistochemical results of mouse NEC model
were positively correlated with the results of human NEC
specimens, the NETs marker observed in mice could
potentially be used to study the pathogenesis of human
NEC [102]. Similar conclusions were reached in the study
by Klinke et al. Furthermore, systemic DNasel treatment
dramatically lowered NEC severity and mortality, and
the outcomes were confirmed in human subjects [103],
Therefore, DNasel is considered as a therapeutic option
for NEC neonates.

Given that the above-mentioned inhibition of PAD4
formation appears differently in mouse NEC models,
there are several factors as follows. Firstly, administer-
ing Cl-amidine in a different murine model of NEC leads
multitude uncertainties in the formation of NETs (NETs
generation time and how much to generate, etc.). That
is, the puzzling effects exerted by NETs are disease- and
model-specific. Secondly, Cl-amidine delivery at differ-
ent times in the development of NEC also produces dif-
ferent impacts. More importantly, NETs as an immune
response modality seems to represent a microcosm of
physiological trade-offs. NEC-induced NETs may be vital
in the early stages of disease to prevent bacteremia, but
are detrimental in later periods when excessive inflam-
mation accumulates leading to tissue destruction [101]. It
helps guide us in the future study to design more rational,
accurate and closer to the human condition disease
models.

Considering the high incidence of NEC in children
with congenital heart disease (CHD) after pharmaco-
logical or surgical intervention, Polin et al. proposed in
1976 to isolate cNEC from NEC [104]. Nowadays, for a
finer understanding of NEC pathogenesis and better
diagnosis and treatment, NEC is stratified into typical
inflammatory NEC(iNEC) occuring mainly in preterm
infants and cardiac NEC (cNEC). Children with CHD
suffer from reduced cardiac contractility and inadequate
blood oxygenation, causing inadequate blood supply to
the superior mesenteric artery, contributing to reduced
bowel liner perfusion and, when treated medically or sur-
gically, blood flow to previously underperfused areas of
the intestine, which leads to intestinal I/R injury [105].



Chen et al. Gut Pathogens (2022) 14:27

Ultimately, intestinal I/R injury causes an excessive
inflammatory response through activated neutrophils
and abnormal intestinal flora, leading to the development
of cNEC [106].

The ultimate outcome of NEC is intestinal inflamma-
tion, and it causes the release of cytokines that permit
the migration of neutrophils to the site of inflammation.
As described previously, NETs are involved in intestinal
I/R injury and excessive intestinal inflammation [74, 92].
We understand that the incidence of cNEC is intimately
linked to I/R damage, so does I/R injury triggered by
NETs involved in the development of NEC? In the latest
clinical retrospective analysis study comparing neonates
with cNEC to those with iNEC, staining for NE and H3cit
showed a significant increase for neonates diagnosed
with ¢cNEC in comparison to neonates with iNEC. And
the concentration of neutrophils was substantially higher
in the ctNEC group. It can be hypothesized that NETs par-
tially mediate the process of intestinal I/R injury in cNEC
[12]. The role of neutrophils and NETs in the pathogen-
esis of NEC has not been fully elucidated, and more pro-
spective studies are needed to verify and explore them as
potential diagnostic parameters.

NETs and Inflammatory Bowel Disease (IBD)

IBD is a chronic intestinal inflammatory disease that
involves innate and acquired immune responses, mainly
ulcerative colitis (UC) and Crohn’s disease (CD), with a
multifactorial pathogenesis involving genetic suscepti-
bility, epithelial barrier defects, dysregulated immune
response, and environmental factors [107, 108]. As a
potential disease mechanism, NETs play an important
role in a variety of immune-mediated diseases, including
IBD, systemic lupus erythematosus, rheumatoid arthritis
and so on [109-111].

NETs and Ulcerative colitis (UC)

UC is a chronic nonspecific inflammation that repeatedly
invades the colon and rectum. Early proteomic analysis
of UC patients indicated that the abundance of calpro-
tectin and lactotransferrin in colonic tissue associated
with the level of inflammation, in addition to the micro-
scopic observation of 11 proteins with elevated abun-
dance in UC biopsy tissue linked to NETSs [14, 112]. Later,
investigators analyzed data on the protein and peptide
levels using linear mixed-effects regression models and
reached the same conclusions [113]. To further explain
the relationship between NETs and UC, many investiga-
tors have invested in clinical and experimental studies of
UC. Among them is a cohort study that assessed patients
with UC and those without a diagnosis of IBD through
colon biopsy. Western blot results revealed that NETs
correlated with the expression of PAD4 in the intestinal
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mucosa. PAD4 spurred the release of NETs through cit-
rullination histones, leading to chromatin decondensa-
tion and DNA release, and, NETs were located mainly
in the mucosa of UC, suggesting that NETs release was
related with characteristic anatomical damage [114].
A in vitro study analyzing the NETs-related proteins in
colon tissues from patients with UC, CD and colon can-
cer demonstrated that PAD4, MPO, NE and citrullination
histone H3 were highly expressed in pathological tissues
of UC compared to CD, that UC-associated neutrophils
yielded more NETs following TNF-a stimulation, and
that those proteins expression was declined upon admin-
istration of anti-TNF-« therapy [115]. It suggests that a
positive regulatory relationship exists between TNF-a
and NETs in UC patients and TNF-a spurs the forming
of NETs, and NETs in turn boosts the secretion of TNF-
a. In another report, the researchers initially analyzed
neutrophils in peripheral blood and colon tissue of 48
patients with IBD and showed that patients with active
disease exhibited more NETSs release than those with
inactive lesions [116]. Likewise, Angelidou et al. studied
that NETs production was higher in patients with active
UC compared to patients with CD and healthy patients,
Interestingly, more IL-1p and tissue factor thrombin
(TF) were found in NETs obtained from colonic tissue
and blood of these patients, and the production of these
was linked to Reddl protein-induced autophagy [117],
which is interrelates NETs with programmed death and
provides a direction for later studies on the mechanisms
of NETs. Importantly, immunohistochemical analysis of
PAD4 in UC patients by Abd EL Hafez A et al. revealed
high expression of PAD4 in UC colon tissue compared to
normal colon tissue, illustrating the prognostic and ther-
apeutic value of NETs-related markers in the colon tissue
of UC patients and guiding patients to targeted therapy
with selective PAD4 inhibitors [114].

Circulating extracellular DNA (ceDNA) is widely
known to worsen the prognosis of many diseases.
CeDNA released by neutrophils during infection or
inflammation is present as NETs. In an experimental
mouse model of colitis, plasma total ceDNA concen-
trations with increasing inflammation were found to
increase, and was accompanied by an increase in endo-
scopic colonic damage scores and the percentage of neu-
trophils forming NETs [118]. In another experimental
study, dextran sodium sulfate (DSS)-induced abundant
NETs in the colon of mice induced apoptosis of epithe-
lial cells and disrupted tight junctions, compromising the
permeability of the intestinal mucosal barrier and causing
increased bacterial translocation and inflammation in the
intestinal lumen [119]. The production of NETs enhances
the production of TNF- «a and IL-1f by activating the
ERK1/2 signaling pathway. The degradation of NETs
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reduces colitis and prevents increased expression of pro-
inflammatory factors as well as neoplasia and thrombo-
sis relevant to IBD [115, 120]. In terms of thrombosis,
NETs release phosphatidylserine (PS) by being prone to
a prothrombotic state, and LPS activates TLR2 and TLR4
in platelets and endothelial cells, thereby inducing pro-
coagulant properties and leading to thrombosis [116].

NETs and Crohn’s disease (CD)

CD is a chronic transmural inflammatory bowel disease
of undetermined etiology, with symptoms invading the
entire GI tract, but the most typical lesions are concen-
trated in the terminal ileum and its adjoining colonic
terminal [121]. Studies on NETs in CD mostly focus on
basic experimental studies. The use of 2,4,6-trinitroben-
zene sulfonic acid (TNBS) to induce the establishment
of a mouse CD model reveals augmented expression of
Ly6G, citrullinated histone H3 (CitH3) and PAD4 in
mouse colonic tissues and an enhanced ability of neutro-
phils to produce NETs in vitro [122]. Blocking the for-
mation of NETs efficiently attenuates the clinical colitis
index and tissue inflammatory response in TNBS mice
and regulates the expression of pro- or anti-inflamma-
tory cytokines. Consistent with the DSS-induced coli-
tis model, damage to the intestinal mucosal barrier and
apoptosis of epithelial cells were also seen in the TNBS-
induced mouse model [112, 123]. Proteomic and metab-
olomic analyses of colonic tissues from CD patients
indicated an upregulation of NE expression of metabolic
proteins associated with NETs compared to healthy sub-
jects and showed marked differences in metabolic pro-
tein abundance and calprotectin [124].

The above clinical and experimental findings indicate
that in IBD, particularly UC, there is greater release of
NETs, which causes higher damage to the colonic tissue,
presents characteristic features of IBD disease, and pre-
disposes patients to extra intestinal pathologies, such as
thrombosis. The use of treatments targeting NETs com-
ponents in IBD has been reported, where inhibitors tar-
geting PAD4, elastase and NETs-related DNA reduce the
clinical manifestations of these diseases. However, there
is a need for further studies to evaluate this therapeutic
strategy [111].

NETs and intestinal cancer

A growing number of research has shown that tumor
cells and tumor microenvironments stimulate neu-
trophils and induces the release of NETs from various
cancer types [125-127]. Neutrophils are well-known
mediators in tumor biology, but their role in solid tumors
has been redefined by NETs. NETs have recently been
detected in specimens from six different human solid
tumors, including colorectal cancer (CRC), and they
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showed substantial individual differences in tissue den-
sity and distribution, and it was concluded that NETs
were positively correlated with IL-8 and negatively cor-
related with tumor-infiltrating CD8 4 lymphocytes [128].
Given that platelet-derived poly P drives the release of
NETs from neutrophils, et al. used biopsies of adenomas,
hyperplastic polyps, IBD and healthy colon tissue were as
a control study and found that in CRC, CD68 + mast cells
expressing Poly P are one of the factors that stimulate the
release of NETs from neutrophils, and mast cells with
detectable CD68+poly P expression could represent a
potential prognostic marker for colorectal adenoma and/
or carcinoma [129].

With the growing number of more studies, the mecha-
nisms related to NETs their actions on tumor tissues are
slowly starting to be revealed, including direct effects to
the cancer cells and changes in the tumor microenviron-
ment, such as promotion of tumor growth [130], promo-
tion of metastasis [131], awakening from a dormant state
[19, 132], and promotion of escape of cytotoxic immune
cells [133, 134]. Recent studies have indicated that NETs
are involved in the entire invasion-metastasis cascade of
tumors [135]. NE released from NETs promotes further
acceleration of colorectal tumor growth by upregulat-
ing PGC-1 through activating TLR-4 in cancer cells and
enhancing mitochondrial biosynthesis [136]. In LPS-
injected CRC mice, cancer cells probably foster the NET
formation by TLR9 and mitochondria-activated protein
kinase signaling pathways, and the analysis of clinical
data from CRC patients showed a striking relationship
between the NET formation and the rate of metastasis
and survival [137]. CRC cells may translocate mutated
KRAS to neutrophils via exons, thereby boosting the
NET formation by modifying IL-8 and ultimately leading
to CRC aggravation [138].

In CRC models in mice, NETs are formed extensively
and depletion or inhibition of NET formation can con-
siderably lower the amount of tumor metastasis [135].
Feedback regulation between elevated IL-8 and NETs
in CRC can promote liver metastasis in CRC [139], and
NETs-associated CEACAMI1 can also serve as a poten-
tial therapeutic target for the prevention of colon can-
cer metastasis [140]. NETs exert a major action in colon
cancer intraperitoneal metastasis via regulation of
colon cancer cell migration and adhesion to extracellu-
lar matrix proteins [138]. Using a clinical mouse model
of colon cancer combined with in vivo video micros-
copy, Rayes et al. confirmed that NETs facilitate the
adhesion of circulating tumor cells (CTCs) to the lung
and liver, thus functionally contributing to metastatic
progression, whereas blocking NET formation by mul-
tiple measures markedly inhibits spontaneous metasta-
sis [125]. Low-density lipoproteins foster the retention
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of CTCs via NETs and suppress T cell-mediated anti-
tumor responses in target organs, hence prompting
postoperative tumor metastasis [141]. Ample evidence
shows that certain cancer cells have a high organismal
preference for colonization and metastasis to certain
distant organs, with colon cancer cells more prone to
metastasize to the liver and lung [142]. Liver metastases
in patients with colon cancer are rich in NETs, which
usually corresponds to the metastatic organ tropism of
colorectal cancer [143]. This was most likely connected
to the NET-DNA receptor-transmembrane protein
CCDC25 on the surface of cancer cells, which senses
extracellular DNA and thus initiates the ILK-B-parvin
pathway to enhance the motility of cancer cells. As we
know, DNase I alters the function of NETs by cleaving
the DNA strand. Xia et al. established a mouse model
of CRC liver metastasis using an adeno-associated virus
(AAV) gene therapy vector that specifically expresses
DNase I in the liver, which in turn proved that AAV-
mediated DNase I gene transfer can be a safe and effec-
tive way to curb liver metastasis [144], hinting at new
therapies for CRC.

Cancer-related thrombosis is strongly linked to
poor prognosis, and patients with CRC are generally at
higher risk of suffering from venous thrombosis, yet the
exact mechanism remains unknown. It has been shown
that platelets in CRC patients stimulate neutrophils
to produce NETs, which can be inhibited by depletion
of HMGBI, and that the level of NETs in the blood of
CRC patients increases in parallel with cancer progres-
sion, leading to a shortened clotting time and a signifi-
cant increase in thrombo-antithrombotic complexes and
fibrin fibrils, compared to healthy subjects. Interestingly,
when exposed to NETs from CRC patients, endothelial
cells were also converted to a procoagulant phenotype.
This finding reveals a complex interaction between neu-
trophils, platelets and endothelial cells [145]. As well,
tumor development and hypercoagulation was also found
to be related to neutrophils in a mouse model of small
intestinal tumors [146]. Finding that intestinal tumo-
rigenesis is associated with aggregation of low-density
neutrophils, which have a pre-tumorigenic N2 pheno-
type and spontaneous NETs formation, and that elevated
circulating lipopolysaccharide induces upregulation of
complement C3a receptors on neutrophils and activa-
tion of the complement cascade, which consequently
leads to NETs division, inducing coagulation and N2
polarization, thus promoting tumorigenesis. It lays the
foundation for a new link between tumorigenic hyper-
coagulation, increased NETs and complement activation,
thereby providing a favorable explanation for the promo-
tion of tumor development by blood coagulation [147].
We therefore consider that NETs potentially offer new
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therapeutic targets for preventing the risk of thrombosis
in patients with CRC.

In addition, high levels of NETs are linked to a poorer
prognosis of cancer. High levels of NETs in the blood
of patients with colorectal cancer were correlated with
postoperative complications and tumor recurrence rates
[135, 148, 149]. Patients with metastatic colorectal can-
cer have elevated NETs in tumor tissue, and greater pre-
operative serum MPO-dsDNA levels resulted in shorter
survival time [136]. Richardson et al. identified a novel
neutrophil phenotype in patients undergoing CRC resec-
tion, showing reduced forming of NETs, reduced apop-
tosis, and increased phagocytosis. In other words, the
accumulation of neutrophils in the circulation as a result
of damaged cell death may be of potential harm to the
postoperative host and an early phenotypic switch may
be desirable [150]. However, the role of NETs for tumors
is not restricted to only promoting tumor growth and
metastasis; Arelaki et al. obtained tumor tissue sec-
tions and metastatic lymph nodes from ten patients with
colon adenocarcinoma and found that TF-bearing-NETs
and neutrophil localization were evident, with a gradual
decline in neutrophil infiltration and NETs concentration
from the tumor center to the distal margins. Interestingly,
NETs created in vitro impeded cancer cell growth by
inducing apoptosis and/or inhibiting proliferation [151].

Above findings showed that NETs are available as bio-
markers to guide clinical diagnosis and treatment, and
to assess the prognosis of cancer patients, and NETs will
emerge as a new target for treatment and intervention of
intestinal cancers. Table 3 summarizes the major effect of
the studies describing NETs in CRC.

Conclusion and future direction

NETs, a double-edged sword in which neutrophils exert
immunomodulatory effects, are involved in the occur-
rences of various diseases, especially intestinal diseases.
On the one hand, the production of NETs by neutrophils
prevents pathogenic microbial invasion and reduces
intestinal damage caused by intestinal inflammation, and
on the other hand, pharmacological inhibition of NET
formation reduces tumor metastasis and IBD occur-
rence. Hence, as with any immunomodulatory approach,
balancing the favorable and unfavorable aspects of
NETs formation in each specific situation will be criti-
cal, and further exploration and understanding of the
regulation and balance of NETs induction, inhibition, and
degradation of NETs on pharmacological targets of intes-
tinal disease without compromising the patient’s immune
defenses is imperative. While multiple methods for
detecting NETs are available, there are no uniform crite-
ria to directly define the occurrence of NETs, and in the
future, identification of markers and other methods to
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assess the forming of NETs in vivo as biomarkers and tar-
gets for therapeutic interventions in different gut-related
diseases is essential. Moreover, more signaling pathways
and major regulators of NETs are required to be explored
in clinical practice in the future so that we can benefit
more from their regulation and thus protect the intestine
from damage and carcinogenesis.
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