Hu J, Pang W, Bai S, Zheng Z, Wu X. Hypoglycemic effect of polysaccharides with different molecular weight of pseudostellaria heterophylla. BMC Complement Altern Med. 2013;13(1):1–9.
Article
Google Scholar
Dong Y, Jing T, Meng Q, Liu C, Hu S, Ma Y, et al. Studies on the antidiabetic activities of cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague–Dawley rats. BioMed Res Int. 2014;2014:1–11.
Google Scholar
Nazir N, Zahoor M, Nisar M, Khan I, Karim N, Abdel-Halim H, et al. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb) in Streptozotocin-induced diabetic rats: pharmacological and computational approach. BMC Complement Altern Med. 2018;18(1):1–16.
Article
CAS
Google Scholar
Han X, Tao Y, Deng Y, Yu J, Cai J, Ren G, et al. Metformin ameliorates insulitis in Stz induced diabetic mice. Peer J. 2017;5:E3155.
Article
PubMed
PubMed Central
CAS
Google Scholar
King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79:1527–34.
Article
CAS
PubMed
Google Scholar
Py P, Mc M, Yc Y, Yt L, Wang Zh, Mc Y. Anti-diabetic effects of Gynura bicolor aqueous extract in mice. J Food Sci. 2019;84(6):1631–7.
Article
CAS
Google Scholar
Gheda S, Naby MA, Mohamed T, Pereira L, Khamis A. Antidiabetic and antioxidant activity of phlorotannins extracted from the brown seaweed Cystoseira compressa in streptozotocin-induced diabetic rats. Environ Sci Pollut Res. 2021;28(18):22886–901.
Article
CAS
Google Scholar
Shafiee F, Khoshvishkaie E, Davoodi A, Dashti Kalantar A, Bakhshi Jouybari H, Ataee R. the determination of blood glucose lowering and metabolic effects of Mespilus germanica L. hydroacetonic extract on streptozocin-induced diabetic Balb/C mice. Medicines. 2018;5(1):1.
Article
PubMed Central
CAS
Google Scholar
Wang K, Tang Z, Zheng Z, Cao P, Shui W, Li Q, et al. Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin-induced type 2 diabetic Balb/C mice. Food Funct. 2016;7(12):4889–97.
Article
CAS
PubMed
Google Scholar
Yan X, Yang C, Lin G, Chen Y, Miao S, Liu B, et al. Antidiabetic potential of green seaweed Enteromorpha prolifera flavonoids regulating insulin signaling pathway and gut microbiota in type 2 diabetic mice. J Food Sci. 2019;84(1):165–73.
Article
CAS
PubMed
Google Scholar
Zhou H, Zhao X, Sun L, Liu Y, Lv Y, Gang X, et al. Gut microbiota profile in patients with type 1 diabetes based on 16s Rrna gene sequencing: a systematic review. Dis Mark. 2020;2020:1–11.
Article
CAS
Google Scholar
Siljander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. EBioMedicine. 2019;46:512–21.
Article
PubMed
PubMed Central
Google Scholar
Boerner BP, Sarvetnick NE. Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci. 2011;1243(1):103–18.
Article
CAS
PubMed
Google Scholar
Paun A, Yau C, Danska JS. The influence of the microbiome on type 1 diabetes. J Immunol. 2017;198(2):590–5.
Article
CAS
PubMed
Google Scholar
Habibi F, Soufi FG, Ghiasi R, Khamaneh AM, Alipour MR. Alteration in inflammation-related Mir-146a expression in Nf-Kb signaling pathway in diabetic rat hippocampus. Adv Pharm Bull. 2016;6(1):99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patterson E, Marques TM, O’Sullivan O, Fitzgerald P, Fitzgerald GF, Cotter PD, et al. Streptozotocin-induced type-1-diabetes disease onset in Sprague-Dawley rats is associated with an altered intestinal microbiota composition and decreased diversity. Microbiology. 2015;161(1):182–93.
Article
CAS
PubMed
Google Scholar
Zheng P, Li Z, Zhou Z. Gut microbiome in type 1 diabetes: a comprehensive review. Diabetes Metab Res Rev. 2018;34(7): e3043.
Article
PubMed
PubMed Central
Google Scholar
Novikova L, Smirnova IV, Rawal S, Dotson AL, Benedict SH, Stehno-Bittel L. Variations in rodent models of type 1 diabetes: islet morphology. J Diabetes Res. 2013;2013:1–13.
Article
Google Scholar
Benkahla MA, Sane F, Bertin A, Vreulx A-C, Elmastour F, Jaidane H, et al. Impact of coxsackievirus-B4e2 combined with a single low dose of Streptozotocin on pancreas of outbred mice: investigation of viral load pathology and inflammation. Sci Rep. 2019;9(1):1–10.
Article
CAS
Google Scholar
Mishra AP, Yedella K, Lakshmi JB, Siva AB. Wdr13 and Streptozotocin-induced diabetes. Nutr Diabetes. 2018;8(1):1–5.
Article
CAS
Google Scholar
Kuipers A, Moll GN, Wagner E, Franklin R. Efficacy of lanthionine-stabilized angiotensin-(1–7) in type I and type II diabetes mouse models. Peptides. 2019;112:78–84.
Article
CAS
PubMed
Google Scholar
Tesch GH, Allen TJ. Rodent models of streptozotocin-induced diabetic nephropathy (methods in renal research). Nephrology. 2007;12(3):261–6.
Article
PubMed
Google Scholar
Furman BL. Streptozotocin‐induced diabetic models in mice and rats. Curr Protocols Pharmacol 2015; 70(1):5.47. 1–5. 20.
Liu R-M, Dai R, Luo Y, Xiao J-H. Glucose-lowering and hypolipidemic activities of polysaccharides from Cordyceps taii in streptozotocin-induced diabetic mice. BMC Complement Altern Med. 2019;19(1):1–10.
Article
Google Scholar
Khan RMM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina. 2019;55(9):546.
Article
PubMed Central
Google Scholar
Aguwa C, Ukwe C, Inya-Agha S, Okonta J. Antidiabetic effect of Picralima nitida aqueous seed extract in experimental rabbit model. J Nat Remedies. 2001;1(2):135–9.
Google Scholar
Ganesan AR, Shanmugam M, Palaniappan S, Rajauria G. Development of edible film from Acanthophora spicifera: structural rheological and functional properties. Food Biosci. 2018;23:121–8.
Article
CAS
Google Scholar
Lin W, Wang W, Liao D, Chen D, Zhu P, Cai G, Kiyoshi A. Polysaccharides from Enteromorpha prolifera improve glucose metabolism in diabetic rats. J Diabetes Res. 2015;2015:675201.
Chen S, Chen H, Tian J, Wang Y, Xing L, Wang J. Chemical modification, antioxidant and Α-amylase inhibitory activities of corn silk polysaccharides. Carbohydr Polym. 2013;98(1):428–37. https://doi.org/10.1016/j.carbpol.2013.06.011.
Article
CAS
PubMed
Google Scholar
Wińska K, Mączka W, Gabryelska K, Grabarczyk M. Mushrooms of the genus Ganoderma used to treat diabetes and insulin resistance. Molecules. 2019;24(22):4075.
Article
PubMed Central
CAS
Google Scholar
Nie Q, Hu J-L, Gao H, Fan L, Chen H, Nie S. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocoll. 2019;86:34–42.
Article
CAS
Google Scholar
Ren X, Liu L, Liu P, Gamallat Y, Xin Y, Shang D. Polysaccharide extracted from Enteromorpha ameliorates cisplastin-induced small intestine injury in mice. J Funct Foods. 2018;49:154–61.
Article
CAS
Google Scholar
Sheng Y, Zheng S, Zhang C, Zhao C, He X, Xu W, et al. Mulberry leaf tea alleviates diabetic nephropathy by inhibiting Pkc Signaling and modulating intestinal flora. J Funct Foods. 2018;46:118–27.
Article
CAS
Google Scholar
Wu C, Pan L-L, Niu W, Fang X, Liang W, Li J, et al. Modulation of gut microbiota by low methoxyl pectin attenuates type 1 diabetes in non-obese diabetic mice. Front Immunol. 2019;10:1733.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mejía-León ME, Barca AM. Diet, microbiota and immune system in type 1 diabetes development and evolution. Nutrients. 2015;7(11):9171–84.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455(7216):1109–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knip M, Siljander H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol. 2016;12(3):154–67.
Article
CAS
PubMed
Google Scholar
Paun A, Yau C, Danska JS. Immune recognition and response to the intestinal microbiome in type 1 diabetes. J Autoimmun. 2016;71:10–8.
Article
CAS
PubMed
Google Scholar
Zatelli GA, Philippus AC, Falkenberg M. An overview of odoriferous marine seaweeds of the Dictyopteris genus: insights into their chemical diversity, biological potential and ecological roles. Rev Bras. 2018;28:243–60.
CAS
Google Scholar
Cui Y, Liu X, Li S, Hao L, Du J, Gao D, et al. Extraction, characterization and biological activity of sulfated polysaccharides from seaweed Dictyopteris divaricata. Int J Biol Macromol. 2018;117:256–63.
Article
CAS
PubMed
Google Scholar
Brown EM, Allsopp PJ, Magee PJ, Gill CI, Nitecki S, Strain CR, et al. Seaweed and human health. Nutr Rev. 2014;72(3):205–16.
Article
PubMed
Google Scholar
Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol. 2011;22(6):315–26.
Article
CAS
Google Scholar
Song F-H, Fan X, Xu X-L, Zhao J-L, Han L-J, Shi J-G. Chemical constituents of the brown alga Dictyopteris divaricata. J Asian Nat Prod Res. 2005;7(6):777–81.
Article
CAS
PubMed
Google Scholar
Liu F, Jin Z, Wang Y, Bi Y, Melton JT. Plastid genome of Dictyopteris divaricata (Dictyotales, Phaeophyceae): understanding the evolution of plastid genomes in brown algae. Mar Biotechnol. 2017;19(6):627–37.
Article
CAS
Google Scholar
Qiao Y-Y, Ji N-Y, Wen W, Yin X-L, Xue Q-Z. A new epoxy-cadinane sesquiterpene from the marine brown alga Dictyopteris divaricata. Mar Drugs. 2009;7(4):600–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen W, Li F, Ji N-Y, Li X-M, Cui C-M, Li X-D, et al. A new cadinane sesquiterpene from the marine brown alga Dictyopteris divaricata. Molecules. 2009;14(6):2273–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim K, Ham Y, Moon J, Kim M, Kim D, Lee W, et al. In vitro cytotoxic activity of Sargassum thunbergii and Dictyopteris divaricata (jeju seaweeds) on the Hl-60 tumour cell line. Int J Pharmacol. 2009;5(5):298–306.
Article
CAS
Google Scholar
Jeong S-Y, Qian Z-J, Jin Y-J, Kim G-O, Yun P-Y, Cho T-O. Investigation of ${\Alpha} $-glucosidase inhibitory activity of ethanolic extracts from 19 species of marine macroalgae in Korea. Nat Prod Sci. 2012;18(2):130–6.
CAS
Google Scholar
Xiancui L, Rongli N, Xiao F, Lijun H, Lixin Z. Macroalage as a source of alpha-glucosidase inhibitors. Chin J Oceanol Limnol. 2005;23(3):354–6.
Article
Google Scholar
Cox S, Abu-Ghannam N, Gupta S, editors. An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds. 2010.
Park SY, Kim YJ, Park G, Kim H-H. Neuroprotective effect of Dictyopteris divaricata extract-capped gold nanoparticles against oxygen and glucose deprivation/reoxygenation. Colloids Surf, B. 2019;179:421–8.
Article
CAS
Google Scholar
Liu H, Qi X, Yu K, Lu A, Lin K, Zhu J, et al. Ampk activation is involved in hypoglycemic and hypolipidemic activities of mogroside-rich extract from Siraitia grosvenorii (swingle) fruits on high-fat diet/streptozotocin-induced diabetic mice. Food Funct. 2019;10(1):151–62.
Article
CAS
PubMed
Google Scholar
El-Tantawy WH, Soliman ND, El-Naggar D, Shafei A. Investigation of antidiabetic action of antidesma bunius extract in type 1 diabetes. Arch Physiol Biochem. 2015;121(3):116–22.
Article
CAS
PubMed
Google Scholar
Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB, et al. Muc2-deficient mice spontaneously develop colitis, indicating that Muc2 is critical for colonic protection. Gastroenterology. 2006;131(1):117–29.
Article
PubMed
CAS
Google Scholar
Fouhy F, Deane J, Rea MC, O’Sullivan Ó, Ross RP, O’Callaghan G, et al. The effects of freezing on faecal microbiota as determined using Miseq sequencing and culture-based investigations. PLoS ONE. 2015;10(3): e0119355.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin R, Xue Y, Hu J, Hu X, Shen Q. The effects of diet and Streptozotocin on metabolism and gut microbiota in a type 2 diabetes mellitus mouse model. Food Hydrocolloids. 2020;31(1):723–39.
CAS
Google Scholar
Wang J, Hu W, Li L, Huang X, Liu Y, Wang D, et al. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with Streptozotocin-induced diabetes. PLoS ONE. 2017;12(6): e0180476.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gupta S, Sharma SB, Bansal SK, Prabhu KM. Antihyperglycemic and hypolipidemic activity of aqueous extract of cassia Auriculata L. leaves in experimental diabetes. J Ethnopharmacol. 2009;123(3):499–503.
Article
PubMed
Google Scholar
Gushiken LF, Beserra FP, Rozza AL, Bérgamo PL, Bérgamo DA, Pellizzon CH. Chemical and biological aspects of extracts from medicinal plants with antidiabetic effects. Rev Diabet Stud RDS. 2016;13(2–3):96.
Article
PubMed
Google Scholar
Ahmed D, Kumar V, Verma A, Gupta PS, Kumar H, Dhingra V, et al. Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. Stem Bark (Alex) on streptozotocin induced diabetic rats. BMC Complement Altern Med. 2014;14(1):1–17.
Article
CAS
Google Scholar
Cárdenas-Ibarra L, Villarreal-Pérez JZ, Lira-Castillo JC, Nava-Alemán A. Randomized double blind crossover trial of aloe vera, Cnidoscolus chayamansa and placebo for reducing hyperglycemia in women with early metabolic syndrome. Clin Nutr Exp. 2017;14:1–12.
Article
Google Scholar
Montefusco-Pereira CV, de Carvalho MJ, de Araújo Boleti AP, Teixeira LS, Matos HR, Lima ES. Antioxidant, anti-inflammatory, and hypoglycemic effects of the leaf extract from Passiflora nitida Kunth. Appl Biochem Biotechnol. 2013;170(6):1367–78.
Article
CAS
PubMed
Google Scholar
Teugwa CM, Mejiato PC, Zofou D, Tchinda BT, Boyom FF. Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae). BMC Complement Altern Med. 2013;13(1):1–9.
Article
Google Scholar
Zheng Q, Feng Y, Xu D-S, Lin X, Chen Y-Z. Influence of sulfation on anti-myocardial ischemic activity of Ophiopogon japonicus polysaccharide. J Asian Nat Prod Res. 2009;11(4):306–21.
Article
CAS
PubMed
Google Scholar
Shirosaki M, Koyama T. Laminaria japonica as a food for the prevention of obesity and diabetes. Adv Food Nutr Res. 2011;64:199–212.
Article
CAS
PubMed
Google Scholar
Zhong Q-W, Zhou T-S, Qiu W-H, Wang Y-K, Xu Q-L, Ke S-Z, et al. Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida. Food Chem. 2021;341: 128148.
Article
CAS
PubMed
Google Scholar
Olsthoorn SE, Wang X, Tillema B, Vanmierlo T, Kraan S, Leenen PJ, et al. Brown seaweed food supplementation: effects on allergy and inflammation and its consequences. Nutrients. 2021;13(8):2613.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang H-W, Fernando K, Oh J-Y, Li X, Jeon Y-J, Ryu B. Anti-obesity and anti-diabetic effects of Ishige okamurae. Mar Drugs. 2019;17(4):202.
Article
CAS
PubMed Central
Google Scholar
Murakami S, Hirazawa C, Ohya T, Yoshikawa R, Mizutani T, Ma N, et al. The edible brown seaweed Sargassum horneri (Turner) C. Agardh ameliorates high-fat diet-induced obesity, diabetes, and hepatic steatosis in mice. Nutrients. 2021;13(2):551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jia R-B, Wu J, Li Z-R, Ou Z-R, Lin L, Sun B, et al. Structural characterization of polysaccharides from three seaweed species and their hypoglycemic and hypolipidemic activities in type 2 diabetic rats. Int J Biol Macromol. 2020;155:1040–9.
Article
CAS
PubMed
Google Scholar
Kakimoto T, Kimata H, Iwasaki S, Fukunari A, Utsumi H. Automated recognition and quantification of pancreatic islets in Zucker diabetic fatty rats treated with exendin-4. J Endocrinol. 2013;216(1):13–20.
Article
CAS
PubMed
Google Scholar
Paget C, Lecomte M, Ruggiero D, Wiernsperger N, Lagarde M. Modification of enzymatic antioxidants in retinal microvascular cells by glucose or advanced glycation end products. Free Radical Biol Med. 1998;25(1):121–9.
Article
CAS
Google Scholar
Lu JT, Xu AT, Shen J, Ran ZH. Crosstalk between intestinal epithelial cell and adaptive immune cell in intestinal mucosal immunity. J Gastroenterol Hepatol. 2017;32(5):975–80.
Article
CAS
PubMed
Google Scholar
Noth R, Lange-Grumfeld J, Stüber E, Kruse M-L, Ellrichmann M, Häsler R, et al. Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model. BMC Gastroenterol. 2011;11(1):1–9.
Article
CAS
Google Scholar
Förster C. Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol. 2008;130(1):55–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aktan F. Inos-mediated nitric oxide production and its regulation. Life Sci. 2004;75(6):639–53.
Article
CAS
PubMed
Google Scholar
Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci. 2009;14:2765.
Article
CAS
PubMed Central
Google Scholar
Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol. 2011;73:283–309.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein Zo-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. 1998;273(45):29745–53.
Article
CAS
PubMed
Google Scholar
Zhao J, Wang J, Dong L, Shi H, Wang Z, Ding H, et al. A protease inhibitor against acute stress-induced visceral hypersensitivity and paracellular permeability in rats. Eur J Pharmacol. 2011;654(3):289–94.
Article
CAS
PubMed
Google Scholar
Alex P, Zachos NC, Nguyen T, Gonzales L, Chen T-E, Conklin LS, et al. Distinct cytokine patterns identified from multiplex profiles of murine Dss and Tnbs-induced colitis. Inflamm Bowel Dis. 2009;15(3):341–52.
Article
PubMed
Google Scholar
Shen L, Weber CR, Turner JR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol. 2008;181(4):683–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang C-F, Lai S-S, Chen Y-H, Liu D, Liu B, Ai C, et al. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via Jnk-Irs1/Pi3k signalling pathways and regulation of gut microbiota. Food Chem Toxicol. 2019;131:110562.
Article
CAS
PubMed
Google Scholar
Zhang C, Wu W, Xin X, Li X, Liu D. Extract of ice plant (Mesembryanthemum crystallinum) ameliorates hyperglycemia and modulates the gut microbiota composition in type 2 diabetic Goto-Kakizaki Rats. Food Funct. 2019;10(6):3252–61.
Article
CAS
PubMed
Google Scholar
Okazaki F, Zang L, Nakayama H, Chen Z, Gao Z-J, Chiba H, et al. Microbiome alteration in type 2 diabetes mellitus model of zebrafish. Sci Rep. 2019;9(1):1–10.
Article
CAS
Google Scholar
Murri M, Leiva I, Gomez-Zumaquero JM, Tinahones FJ, Cardona F, Soriguer F, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med. 2013;11(1):1–12.
Article
Google Scholar
Zhang B, Sun W, Yu N, Sun J, Yu X, Li X, et al. Anti-diabetic effect of baicalein is associated with the modulation of gut microbiota in streptozotocin and high-fat-diet induced diabetic rats. J Funct Foods. 2018;46:256–67.
Article
CAS
Google Scholar
Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 2011;5(1):82–91.
Article
CAS
PubMed
Google Scholar
Ren X, Liu L, Gamallat Y, Zhang B, Xin Y. Enteromorpha and polysaccharides from enteromorpha ameliorate loperamide-induced constipation in mice. Biomed Pharmacother. 2017;96:1075–81.
Article
CAS
PubMed
Google Scholar
Hao L, Sheng Z, Lu J, Tao R, Jia S. Characterization and antioxidant activities of extracellular and intracellular polysaccharides from Fomitopsis pinicola. Carbohyd Polym. 2016;141:54–9.
Article
CAS
Google Scholar
Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–6.
Article
CAS
Google Scholar
Ammon H. Boswellic extracts and 11-keto-ß-boswellic acids prevent type 1 and type 2 diabetes mellitus by suppressing the expression of proinflammatory cytokines. Phytomedicine. 2019;63:153002.
Article
CAS
PubMed
Google Scholar
Gooding J, Cao L, Whitaker C, Mwiza J-M, Fernander M, Ahmed F, et al. Meprin Β metalloproteases associated with differential metabolite profiles in the plasma and urine of mice with type 1 diabetes and diabetic nephropathy. BMC Nephrol. 2019;20(1):1–18.
Article
Google Scholar
Li Y-Y, Liu H-H, Chen H-L, Li Y-P. Adipose-derived mesenchymal stem cells ameliorate Stz-induced pancreas damage in type 1 diabetes. Bio-Med Mater Eng. 2012;22(1–3):97–103.
Article
CAS
Google Scholar
Cui K, Zhang S, Jiang X, Xie W. Novel synergic antidiabetic effects of astragalus polysaccharides combined with Crataegus flavonoids via improvement of islet function and liver metabolism. Mol Med Rep. 2016;13(6):4737–44.
Article
CAS
PubMed
Google Scholar
Aref AB, Ahmed OM, Ali LA, Semmler M. Maternal rat diabetes mellitus deleteriously affects insulin sensitivity and beta-cell function in the offspring. J Diabetes Res. 2013;2013:429154.
Watts T, Berti I, Sapone A, Gerarduzzi T, Not T, Zielke R, et al. Role of the intestinal tight junction modulator zonulin in the pathogenesis of type i diabetes in bb diabetic-prone rats. Proc Natl Acad Sci. 2005;102(8):2916–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mishra JS, More AS, Kumar S. Elevated androgen levels induce hyperinsulinemia through increase in Ins1 transcription in pancreatic beta cells in female rats. Biol Reprod. 2018;98(4):520–31.
Article
PubMed
PubMed Central
Google Scholar