Ali M, Lopez AL, You YA, Kim YE, Sah B, Maskery B, Clemens J. The global burden of cholera. Bull World Health Organ. 2012;90:209-218A.
Article
PubMed
PubMed Central
Google Scholar
Boucher Y, Orata FD, Alam M. The out-of-the-delta hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen. Front Microbiol. 2015;6:1120.
Article
PubMed
PubMed Central
Google Scholar
Boucher Y. Sustained local diversity of Vibrio cholerae O1 biotypes in a previously cholera-free country. mBio. 2016;7:e00570-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Islam MT, Alam M, Boucher Y. Emergence, ecology and dispersal of the pandemic generating Vibrio cholerae lineage. Int Microbiol. 2017;20:106–15.
CAS
PubMed
Google Scholar
Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev. 1998;62:1301–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Microbial Genomes. National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA. https://www.ncbi.nlm.nih.gov/genome/microbes. Accessed 18 Oct 2022.
Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES, Turnsek MA, Guo Y, Wang S, Paxinos EE, Orata F, et al. Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti. mBio. 2013;4:e00398-13.
Article
PubMed
PubMed Central
Google Scholar
Hendriksen RS, Price LB, Schupp JM, Gillece JD, Kaas RS, Engelthaler DM, Bortolaia V, Pearson T, Waters AE, Upadhyay BP, et al. Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. mBio. 2011;2:e00157-11.
Article
PubMed
PubMed Central
Google Scholar
Orata FD, Keim PS, Boucher Y. The 2010 cholera outbreak in Haiti: how science solved a controversy. PLoS Pathog. 2014;10:e1003967.
Article
PubMed
PubMed Central
Google Scholar
Eppinger M, Pearson T, Koenig SS, Pearson O, Hicks N, Agrawal S, Sanjar F, Galens K, Daugherty S, Crabtree J, et al. Genomic epidemiology of the Haitian cholera outbreak: a single introduction followed by rapid, extensive, and continued spread characterized the onset of the epidemic. mBio. 2014;5:e01721-14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weill FX, Domman D, Njamkepo E, Almesbahi AA, Naji M, Nasher SS, Rakesh A, Assiri AM, Sharma NC, Kariuki S, et al. Genomic insights into the 2016–2017 cholera epidemic in Yemen. Nature. 2019;565:230–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirchberger PC, Orata FD, Nasreen T, Kauffman KM, Tarr CL, Case RJ, Polz MF, Boucher YF. Culture-independent tracking of Vibrio cholerae lineages reveals complex spatiotemporal dynamics in a natural population. Environ Microbiol. 2020;22:4244–56.
Article
CAS
PubMed
Google Scholar
Kirchberger PC, Orata FD, Barlow EJ, Kauffman KM, Case RJ, Polz MF, Boucher Y. A small number of phylogenetically distinct clonal complexes dominate a coastal Vibrio cholerae population. Appl Environ Microbiol. 2016;82:5576–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang KYH, Orata FD, Islam MT, Nasreen T, Alam M, Tarr CL, Boucher YF. A Vibrio cholerae core genome multilocus sequence typing scheme to facilitate the epidemiological study of cholera. J Bacteriol. 2020;202:e00086-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kirchberger PC, Turnsek M, Hunt DE, Haley BJ, Colwell RR, Polz MF, Tarr CL, Boucher Y. Vibrio metoecus sp. nov., a close relative of Vibrio cholerae isolated from coastal brackish ponds and clinical specimens. Int J Syst Evol Microbiol. 2014;64:3208–14.
Article
PubMed
Google Scholar
Islam MT, Liang K, Orata FD, Im MS, Alam M, Lee CC, Boucher YF. Vibrio tarriae sp. nov., a novel member of the Cholerae clade. Int J Syst Evol Microbiol. 2022;72:005571.
Article
CAS
Google Scholar
Choopun N. The population structure of Vibrio cholerae in Chesapeake Bay. PhD thesis. College Park, Maryland, USA: University of Maryland; 2004.
Haley BJ, Grim CJ, Hasan NA, Choi SY, Chun J, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han CS, et al. Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae. BMC Microbiol. 2010;10:154.
Article
PubMed
PubMed Central
Google Scholar
Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF. Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. mBio. 2011;2:e00335-10.
Article
PubMed
PubMed Central
Google Scholar
Orata FD, Kirchberger PC, Méheust R, Barlow EJ, Tarr CL, Boucher Y. The dynamics of genetic interactions between Vibrio metoecus and Vibrio cholerae, two close relatives co-occurring in the environment. Genome Biol Evol. 2015;7:2941–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vezzulli L, Stauder M, Grande C, Pezzati E, Verheye HM, Owens NJ, Pruzzo C. gbpA as a novel qPCR target for the species-specific detection of Vibrio cholerae O1, O139, non-O1/non-O139 in environmental, stool, and historical continuous plankton recorder samples. PLoS ONE. 2015;10:e0123983.
Article
PubMed
PubMed Central
Google Scholar
Carda-Diéguez M, Ghai R, Rodriguez-Valera F, Amaro C. Wild eel microbiome reveals that skin mucus of fish could be a natural niche for aquatic mucosal pathogen evolution. Microbiome. 2017;5:162.
Article
PubMed
PubMed Central
Google Scholar
Nasreen T, Hussain NAS, Islam MT, Orata FD, Kirchberger PC, Case RJ, Alam M, Yanow SK, Boucher YF. Simultaneous quantification of Vibrio metoecus and Vibrio cholerae with its O1 serogroup and toxigenic subpopulations in environmental reservoirs. Pathogens. 2020;9:1053.
Article
CAS
PubMed Central
Google Scholar
QIAGEN CLC Genomics Workbench: NGS data analysis for any species, any platform, any workflow. QIAGEN, Aarhus, Denmark. https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-clc-genomics-workbench. Accessed 28 Sept 2022.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
Article
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.
Article
PubMed
PubMed Central
Google Scholar
Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol. 2005;71:5107–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tarr CL, Patel JS, Puhr ND, Sowers EG, Bopp CA, Strockbine NA. Identification of Vibrio isolates by a multiplex PCR assay and rpoB sequence determination. J Clin Microbiol. 2007;45:134–40.
Article
CAS
PubMed
Google Scholar
Orata FD, Xu Y, Gladney LM, Rishishwar L, Case RJ, Boucher Y, Jordan IK, Tarr CL. Characterization of clinical and environmental isolates of Vibrio cidicii sp. nov., a close relative of Vibrio navarrensis. Int J Syst Evol Microbiol. 2016;66:4148–55.
Article
CAS
PubMed
Google Scholar
Gladney LM, Tarr CL. Molecular and phenotypic characterization of Vibrio navarrensis isolates associated with human illness. J Clin Microbiol. 2014;52:4070–4.
Article
PubMed
PubMed Central
Google Scholar
Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Umayam L, et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature. 2000;406:477–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rasko DA, Myers GS, Ravel J. Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinformatics. 2005;6:2.
Article
PubMed
PubMed Central
Google Scholar
Rost B. Twilight zone of protein sequence alignments. Protein Eng. 1999;12:85–94.
Article
CAS
PubMed
Google Scholar
Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics. 2011;27:334–42.
Article
CAS
PubMed
Google Scholar
Goecks J, Nekrutenko A, Taylor J, Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11:R86
Article
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaudhari NM, Gupta VK, Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci Rep. 2016;6:24373.
Article
CAS
PubMed
PubMed Central
Google Scholar
Intella. Vound LLC, Scottsdale, Arizona, USA. https://www.vound-software.com/10-100-250. Accessed 28 Sept 2022.
Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics. 2011;12:444.
Article
PubMed
PubMed Central
Google Scholar
Cantalapiedra CP, Hernandez-Plaza A, Letunic I, Bork P, Huerta-Cepas J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021;38:5825–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, Koonin EV. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2021;49:D274–81.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–12.
Article
CAS
PubMed
Google Scholar
Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G. Interactive microbial genome visualization with GView. Bioinformatics. 2010;26:3125–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, Taviani E, Jeon YS, Kim DW, Lee JH, et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA. 2009;106:15442–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 2022;50:D912–7.
Article
CAS
PubMed
Google Scholar
Liu B, Zheng D, Zhou S, Chen L, Yang J. VFDB – pathogenesis of Vibrio. Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. http://www.mgc.ac.cn/cgi-bin/VFs/genus.cgi?Genus=Vibrio. Accessed 28 Sept 2022.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.
Article
CAS
PubMed
Google Scholar
Schliep K, Lopez P, Lapointe FJ, Bapteste É. Harvesting evolutionary signals in a forest of prokaryotic gene trees. Mol Biol Evol. 2011;28:1393–405.
Article
CAS
PubMed
Google Scholar
Hillis DM, Bull JJ. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 1993;42:182–92.
Article
Google Scholar
QI Macros. KnowWare International Inc., Denver, Colorado, USA. https://www.qimacros.com. Accessed 28 Sept 2022.
Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.
Article
CAS
PubMed
Google Scholar
Menozzi FD, Pethe K, Bifani P, Soncin F, Brennan MJ, Locht C. Enhanced bacterial virulence through exploitation of host glycosaminoglycans. Mol Microbiol. 2002;43:1379–86.
Article
CAS
PubMed
Google Scholar
Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzolà F. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal. 2012;17:684–716.
Article
CAS
PubMed
Google Scholar
Jourd’heuil D, Grisham MB, Granger DN. Nitric oxide and the gut. Curr Gastroenterol Rep. 1999;1:384–8.
Article
CAS
PubMed
Google Scholar
Bueno E, Sit B, Waldor MK, Cava F. Genetic dissection of the fermentative and respiratory contributions supporting Vibrio cholerae hypoxic growth. J Bacteriol. 2020;202:e00243-20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bueno E, Sit B, Waldor MK, Cava F. Anaerobic nitrate reduction divergently governs population expansion of the enteropathogen Vibrio cholerae. Nat Microbiol. 2018;3:1346–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gabbianelli R, Signoretti C, Marta I, Battistoni A, Nicolini L. Vibrio cholerae periplasmic superoxide dismutase: isolation of the gene and overexpression of the protein. J Biotechnol. 2004;109:123–30.
Article
CAS
PubMed
Google Scholar
Cipollone R, Ascenzi P, Visca P. Common themes and variations in the rhodanese superfamily. IUBMB Life. 2007;59:51–9.
Article
CAS
PubMed
Google Scholar
Motl N, Skiba MA, Kabil O, Smith JL, Banerjee R. Structural and biochemical analyses indicate that a bacterial persulfide dioxygenase-rhodanese fusion protein functions in sulfur assimilation. J Biol Chem. 2017;292:14026–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandenbergh PA, Bawdon RE, Berk RS. Rapid test for determining the intracellullar rhodanese activity of various bacteria. Int J Syst Bacteriol. 1979;29:339–44.
Article
CAS
Google Scholar
Wang Y, Ehsan M, Huang J, Aimulajiang K, Yan R, Song X, Xu L, Li X. Characterization of a rhodanese homologue from Haemonchus contortus and its immune-modulatory effects on goat immune cells in vitro. Parasit Vectors. 2020;13:454.
Article
PubMed
PubMed Central
Google Scholar
Lányi B. Rhodanese activity: a simple and reliable taxonomic tool for gram-negative bacteria. J Med Microbiol. 1982;15:263–6.
Article
PubMed
Google Scholar
Lassy RA, Miller CG. Peptidase E, a peptidase specific for N-terminal aspartic dipeptides, is a serine hydrolase. J Bacteriol. 2000;182:2536–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen TTH, Myrold DD, Mueller RS. Distributions of extracellular peptidases across prokaryotic genomes reflect phylogeny and habitat. Front Microbiol. 2019;10:413.
Article
PubMed
PubMed Central
Google Scholar
Carter TH, Miller CG. Aspartate-specific peptidases in Salmonella typhimurium: mutants deficient in peptidase E. J Bacteriol. 1984;159:453–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waldor MK, Mekalanos JJ. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science. 1996;272:1910–4.
Article
CAS
PubMed
Google Scholar
Karaolis DK, Somara S, Maneval DR Jr, Johnson JA, Kaper JB. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature. 1999;399:375–9.
Article
CAS
PubMed
Google Scholar
Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA. 1987;84:2833–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee JH, Ahn SH, Lee EM, Kim YO, Lee SJ, Kong IS. Characterization of the enzyme activity of an extracellular metalloprotease (VMC) from Vibrio mimicus and its C-terminal deletions. FEMS Microbiol Lett. 2003;223:293–300.
Article
CAS
PubMed
Google Scholar
Wong SK, Zhang X-H, Woo NY. Vibrio alginolyticus thermolabile hemolysin (TLH) induces apoptosis, membrane vesiculation and necrosis in sea bream erythrocytes. Aquaculture. 2012;330:29–36.
Article
Google Scholar
Doherty CP. Host-pathogen interactions: the role of iron. J Nutr. 2007;137:1341–4.
Article
CAS
PubMed
Google Scholar
Joshi A, Kostiuk B, Rogers A, Teschler J, Pukatzki S, Yildiz FH. Rules of engagement: the type VI secretion system in Vibrio cholerae. Trends Microbiol. 2017;25:267–79.
Article
CAS
PubMed
Google Scholar
Kirchberger PC, Unterweger D, Provenzano D, Pukatzki S, Boucher Y. Sequential displacement of type VI secretion system effector genes leads to evolution of diverse immunity gene arrays in Vibrio cholerae. Sci Rep. 2017;7:45133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hussain NAS, Kirchberger PC, Case RJ, Boucher YF. Modular molecular weaponry plays a key role in competition within an environmental Vibrio cholerae population. Front Microbiol. 2021;12:671092.
Article
PubMed
PubMed Central
Google Scholar
Schaible UE, Kaufmann SH. Iron and microbial infection. Nat Rev Microbiol. 2004;2:946–53.
Article
CAS
PubMed
Google Scholar
Peterson KM, Mekalanos JJ. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun. 1988;56:2822–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fullner KJ, Mekalanos JJ. In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin. EMBO J. 2000;19:5315–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zuverink M, Barbieri JT. Protein toxins that utilize gangliosides as host receptors. Prog Mol Biol Transl Sci. 2018;156:325–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jermyn WS, Boyd EF. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology. 2002;148:3681–93.
Article
CAS
PubMed
Google Scholar
Coker JK, Moyne O, Rodionov DA, Zengler K. Carbohydrates great and small, from dietary fiber to sialic acids: how glycans influence the gut microbiome and affect human health. Gut Microbes. 2021;13:1869502.
Article
PubMed Central
Google Scholar
Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Curr Opin Microbiol. 2015;23:148–54.
Article
CAS
PubMed
Google Scholar
Lapierre P, Gogarten JP. Estimating the size of the bacterial pan-genome. Trends Genet. 2009;25:107–10.
Article
CAS
PubMed
Google Scholar
Watve SS, Thomas J, Hammer BK. CytR is a global positive regulator of competence, type VI secretion, and chitinases in Vibrio cholerae. PLoS ONE. 2015;10:e0138834.
Article
PubMed
PubMed Central
Google Scholar
Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 2015;347:63–7.
Article
CAS
PubMed
Google Scholar
Seitz P, Blokesch M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proc Natl Acad Sci USA. 2013;110:17987–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev. 2013;77:53–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blokesch M, Schoolnik GK. The extracellular nuclease Dns and its role in natural transformation of Vibrio cholerae. J Bacteriol. 2008;190:7232–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalia AB, Seed KD, Calderwood SB, Camilli A. A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. Proc Natl Acad Sci USA. 2015;112:10485–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang SC, Fu W. Seasonal abundance and distribution of Vibrio cholerae in coastal waters quantified by a 16S–23S intergenic spacer probe. Microb Ecol. 2001;42:540–8.
Article
CAS
PubMed
Google Scholar
Wein T, Dagan T. The effect of population bottleneck size and selective regime on genetic diversity and evolvability in bacteria. Genome Biol Evol. 2019;11:3283–90.
PubMed
PubMed Central
Google Scholar
Islam MT, Nasreen T, Kirchberger PC, Liang KYH, Orata FD, Johura FT, Hussain NAS, Im MS, Tarr CL, Alam M, et al. Population analysis of Vibrio cholerae in aquatic reservoirs reveals a novel sister species (Vibrio paracholerae sp. nov.) with a history of association with humans. Appl Environ Microbiol. 2021;87:e00422-21.
Article
CAS
PubMed Central
Google Scholar
Islam MT, Liang K, Im MS, Winkjer J, Busby S, Tarr CL, Boucher Y. Draft genome sequences of nine Vibrio sp. isolates from across the United States closely related to Vibrio cholerae. Microbiol Resour Announc. 2018;7:e00965-18.
Article
PubMed
PubMed Central
Google Scholar
Liang K, Islam MT, Hussain N, Winkjer NS, Im MS, Rowe LA, Tarr CL, Boucher Y. Draft genome sequences of eight Vibrio sp. clinical isolates from across the United States that form a basal sister clade to Vibrio cholerae. Microbiol Resour Announc. 2019;8:e01473-18.
Article
PubMed
PubMed Central
Google Scholar
Liang K, Orata FD, Winkjer NS, Rowe LA, Tarr CL, Boucher Y. Complete genome sequence of Vibrio sp. strain 2521-89, a close relative of Vibrio cholerae isolated from lake water in New Mexico, USA. Genome Announc. 2017;5:e00905-17.
Article
PubMed
PubMed Central
Google Scholar
Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat Rev Microbiol. 2019;17:247–60.
Article
CAS
PubMed
Google Scholar
Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol. 2020;96:fiaa031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol. 2011;2:158.
Article
PubMed
PubMed Central
Google Scholar
Madsen JS, Roder HL, Russel J, Sorensen H, Burmolle M, Sorensen SJ. Coexistence facilitates interspecific biofilm formation in complex microbial communities. Environ Microbiol. 2016;18:2565–74.
Article
CAS
PubMed
Google Scholar
Flemming HC. The perfect slime. Colloids Surf B Biointerfaces. 2011;86:251–9.
Article
CAS
PubMed
Google Scholar
Keymer DP, Boehm AB. Recombination shapes the structure of an environmental Vibrio cholerae population. Appl Environ Microbiol. 2011;77:537–44.
Article
CAS
PubMed
Google Scholar
Pretzer C, Druzhinina IS, Amaro C, Benediktsdóttir E, Hedenstrom I, Hervio-Heath D, Huhulescu S, Schets FM, Farnleitner AH, Kirschner AK. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains. Environ Microbiol. 2017;19:328–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esteves K, Mosser T, Aujoulat F, Hervio-Heath D, Monfort P, Jumas-Bilak E. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons. Front Microbiol. 2015;6:708.
Article
PubMed
PubMed Central
Google Scholar