Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020. https://doi.org/10.1038/s41577-019-0198-4.
Article
PubMed
Google Scholar
Duan Y, Zeng L, Zheng C, Song B, Li F, Kong X, Xu K. Inflammatory links between high fat diets and diseases. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.02649.
Article
PubMed
PubMed Central
Google Scholar
Guillemot-Legris O, Masquelier J, Everard A, Cani PD, Alhouayek M, Muccioli GG. High-fat diet feeding differentially affects the development of inflammation in the central nervous system. J Neuroinflammation. 2016. https://doi.org/10.1186/s1297401606668.
Article
PubMed
PubMed Central
Google Scholar
Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL, O K. Short term high fat diet induces obesity-enhancing changes in mouse gut microbiota that are partially reversed by cessation of the high fat diet. Lipids. 2017. https://doi.org/10.1007/s11745-017-4253-2.
Article
PubMed
Google Scholar
Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS. 2014. https://doi.org/10.1371/journal.pone.0092193.
Article
Google Scholar
Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Böhm C, Wenning M, Wagner M, Blaut M, Schmitt-Kopplin P, Kuster B, Haller D, Clavel T. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014. https://doi.org/10.1038/ismej.2013.155.
Article
PubMed
PubMed Central
Google Scholar
Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008. https://doi.org/10.1016/j.chom.2008.02.015.
Article
PubMed
PubMed Central
Google Scholar
Willing BP, Russell SL, Finlay BB. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol. 2011. https://doi.org/10.1038/nrmicro2536.
Article
PubMed
Google Scholar
Ramirez J, Guarner F, Bustos Fernandez L, Maruy A, Sdepanian VL, Cohen H. Antibiotics as major disruptors of gut microbiota. Front Cell Infect Microbiol. 2020. https://doi.org/10.3389/fcimb.2020.572912.
Article
PubMed
PubMed Central
Google Scholar
Akhavan BJ, Khanna NR, Vijhani P. Amoxicillin. Florida: In Treasure StatPearls Publishing; 2021.
Google Scholar
Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8111715.
Article
PubMed
PubMed Central
Google Scholar
Magne F, Gotteland M, Gauthier L, et al. The firmicutes/bacteroidetes ratio a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020. https://doi.org/10.3390/nu12051474.
Article
PubMed
PubMed Central
Google Scholar
Palmas V, Pisanu S, Madau V, et al. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-84928-w.
Article
PubMed
PubMed Central
Google Scholar
Clarke SF, Murphy EF, Nilaweera K, et al. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes. 2012. https://doi.org/10.4161/gmic.20168.
Article
PubMed
PubMed Central
Google Scholar
Serino M, Luche E, Gres S, Baylac A, Bergé M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C, Mariette J, Bouchez O, Lluch J, Ouarné F, Monsan P, Valet P, Roques C, Amar J, Bouloumié A, Théodorou V, Burcelin R. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut. 2012. https://doi.org/10.1136/gutjnl-2011-301012.
Article
PubMed
Google Scholar
King CH, Desai H, Sylvetsky AC, LoTempio J, Ayanyan S, Carrie J, Crandall KA, Fochtman BC, Gasparyan L, Gulzar N, Howell P, Issa N, Krampis K, Mishra L, Morizono H, Pisegna JR, Rao S, Ren Y, Simonyan V, Smith K, VedBrat S, Yao MD, Mazumder R. Baseline human gut microbiota profile in healthy people and standard reporting template. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0206484.
Article
PubMed
PubMed Central
Google Scholar
Kaakoush NO. Insights into the role of erysipelotrichaceae in the human host. Front Cell Infect Microbiol. 2015. https://doi.org/10.3389/fcimb.2015.00084.
Article
PubMed
PubMed Central
Google Scholar
Yi H, Wang L, Xiong Y, Wen X, Wang Z, Yang X, Gao K, Jiang Z. Effects of barrier function in weaned pigs. J Anim Sci. 2018. https://doi.org/10.1093/jas/sky129.
Article
PubMed
PubMed Central
Google Scholar
Sun J, Qiao Y, Qi C, Jiang W, Xiao H, Shi Y, Le GW. High-fat-diet-induced obesity is associated with decreased antiinflammatory Lactobacillus reuteri sensitive to oxidative stress in mouse Peyer’s patches. Nutrition. 2016. https://doi.org/10.1016/j.nut.2015.08.020.
Article
PubMed
Google Scholar
Zhou W, Xu H, Zhan L, Lu X, Zhang L. Dynamic development of fecal microbiome during the progression of diabetes mellitus in zucker diabetic fatty rats. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.00232.
Article
PubMed
PubMed Central
Google Scholar
Nagao-Kitamoto H, Kamada N. Host-microbial cross-talk in inflammatory bowel disease. Immune Netw. 2017. https://doi.org/10.4110/in.2017.17.1.1.
Article
PubMed
PubMed Central
Google Scholar
Lam YY, Ha CW, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J, Cook DI, Hunt NH, Caterson ID, Holmes AJ, Storlien LH. Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0034233.
Article
PubMed
PubMed Central
Google Scholar
Zhang Q, Xiao X, Li M, Yu M, Ping F, Zheng J, Wang T, Wang X. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats. PLoS. 2017. https://doi.org/10.1371/journal.pone.0184735/.
Article
Google Scholar
He C, Cheng D, Peng C, Li Y, Zhu Y, Lu N. High-fat diet induces dysbiosis of gastric microbiota prior to gut microbiota in association with metabolic disorders in mice. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.00639.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Cai Q, Zheng W, Steinwandel M, Blot WJ, Shu XO, Long J. 2019 Oral microbiome and obesity in a large study of low-income and African-American populations. J Oral Microbiol. 2019;10(1080/20002297):1650597.
Article
Google Scholar
Fernández-Hernando C, Suárez Y. ANGPTL4: a multifunctional protein involved in metabolism and vascular homeostasis. Curr Opin Hematol. 2022. https://doi.org/10.1097/MOH.0000000000000580.
Article
Google Scholar
Uranga CC, Arroyo P Jr, Duggan BM, Gerwick WH, Edlund A. Commensal oral rothia mucilaginosa produces enterobactin, a metal-chelating siderophore. MSystems. 2020. https://doi.org/10.1128/mSystems.00161-20.
Article
PubMed
PubMed Central
Google Scholar
Inoue Ohue-Kitano R, Tsukahara T, Tanaka M, Masuda S, Inoue T, Yamakage H, Kusakabe T, Hasegawa K, Shimatsu A, Satoh-Asahara N. Prediction of functional profiles of gut microbiota from 16S rRNA type 2 diabetic patients. J Clin Biochem Nutr. 2017. https://doi.org/10.3164/jcbn.17-44.
Article
PubMed
Google Scholar
Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021. https://doi.org/10.1080/19490976.2021.1875796.
Article
PubMed
PubMed Central
Google Scholar
Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K, Mohammed M, Handberg EM, Richards EM, Pepine CJ, Raizada MK. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci. 2018. https://doi.org/10.1042/CS20180087.
Article
Google Scholar
Naderpoor N, Mousa A, Gomez-Arango LF, Barrett HL, Dekker Nitert M, de Courten B. Faecal microbiota are related to insulin sensitivity and secretion in overweight or obese adults. J Clin Med. 2019. https://doi.org/10.3390/jcm8040452.
Article
PubMed
PubMed Central
Google Scholar
Yang JY, Lee YS, Kim Y, Lee SH, Ryu S, Fukuda S, Hase K, Yang CS, Lim HS, Kim MS, Kim HM, Ahn SH, Kwon BE, Ko HJ, Kweon MN. Gut commensal Bacteroide acidifaciens prevents obesity and improves insulin sensitivity in mice. Mucosal Immunol. 2017. https://doi.org/10.1038/mi.2016.42.
Article
PubMed
Google Scholar
Dao MC, everard A, aron-wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K, MICRO-Obes Consortium. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity relationship with gut microbiome richness and ecology. Gut. 2016. https://doi.org/10.1136/gutjnl-2014-308778.
Article
PubMed
Google Scholar
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011. https://doi.org/10.1126/science.1208344.
Article
PubMed
PubMed Central
Google Scholar
Yin X, Liao W, Li Q, Zhang H, Liu Z, Zheng X, Zheng L, Fen X. Interactions between resveratrol and gut microbiota affect the development of hepatic steatosis: a fecal microbiota transplantation study in high-fat diet mice. J Funct Foods. 2020. https://doi.org/10.3389/fphar.2020.0124967:103883.
Article
Google Scholar
Kim SJ, Kim SE, Kim AR, Kang S, Park MY, Sung MK. Dietary fat intake and age modulate the composition of the gut microbiota and colonic inflammation in C57BL/6J mice. BMC Microbiol. 2019. https://doi.org/10.1186/s12866-019-1557-9.
Article
PubMed
PubMed Central
Google Scholar
Lange K, Buerger M, Stallmach A, Bruns T. Effects of antibiotics on gut microbiota. Dig Dis. 2016. https://doi.org/10.1159/000443360.
Article
PubMed
Google Scholar
Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, Kootte RS, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol. 2014. https://doi.org/10.1016/j.jhep.2013.11.034.
Article
PubMed
Google Scholar
Yang L, Bajinka O, Jarju PO, et al. The varying effects of antibiotics on gut microbiota. AMB Expr. 2021. https://doi.org/10.1186/s13568-021-01274-w.
Article
Google Scholar
Heisel T, Montassier E, Johnson A, Al-Ghalith G, Lin YW, Wei LN, Knights D, Gale CA. High-fat diet changes fungal microbiomes and interkingdom relationships in the murine gut. mSphere. 2017. https://doi.org/10.1128/mSphere.00351-17.
Article
PubMed
PubMed Central
Google Scholar
Lin H, An Y, Hao F, et al. correlations of fecal metabonomic and microbiomic changes induced by high-fat diet in the pre-obesity state. Sci Rep. 2016. https://doi.org/10.1038/srep21618.
Article
PubMed
PubMed Central
Google Scholar
Liu S, Qin P, Wang J. High-fat diet alters the intestinal microbiota in streptozotocin-induced type 2 diabetic mice. Microorganisms. 2019. https://doi.org/10.3390/microorganisms7060176.
Article
PubMed
PubMed Central
Google Scholar
Deshpande NG, Saxena J, Pesaresi TG, Carrell CD, Ashby GB, Liao MK, Freeman LR. High fat diet alters gut microbiota but not spatial working memory in early middle-aged Sprague Dawley rats. PLoS ONE. 2019. https://doi.org/10.1371/journal.pone.0217553.
Article
PubMed
PubMed Central
Google Scholar
Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006. https://doi.org/10.1038/4441022a.
Article
PubMed
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. nature. 2006. https://doi.org/10.1038/nature05414.
Article
PubMed
Google Scholar
Lagier JC, Million M, Hugon P, Armougom F, Raoult D. Human gut microbiota: repertoire and variations. Front Cell Infect Microbiol. 2012. https://doi.org/10.3389/fcimb.2012.00136.
Article
PubMed
PubMed Central
Google Scholar
Sato M, Dehvari N, Öberg AI, Summers RJ, Hutchinson DS, Bengtsson T. Response to Comment on Sato et al Improving type 2 diabetes through a distinct adrenergic signaling pathway Involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes. 2014. https://doi.org/10.2337/db14-1283.
Article
PubMed
Google Scholar
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012. https://doi.org/10.1016/j.cmet.2011.12.009.
Article
PubMed
PubMed Central
Google Scholar
Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012. https://doi.org/10.1038/nature11552.
Article
PubMed
Google Scholar
Jang LG, Choi G, Kim SW, Kim BY, Lee S, Park H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. J Int Soc Sports Nutr. 2019;16(1):21. https://doi.org/10.1186/s12970-019-0290-y.
Article
PubMed
PubMed Central
Google Scholar
Singh RP, Halaka DA, Hayouka Z, Tirosh O. High-fat diet induced alteration of mice microbiota and the functional ability to utilize fructooligosaccharide for ethanol production. Front Cell Infect Microbiol. 2020. https://doi.org/10.3389/fcimb.2020.00376.
Article
PubMed
PubMed Central
Google Scholar
Schneeberger M, Everard A, Gómez-Valadés A, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015. https://doi.org/10.1038/srep16643.
Article
PubMed
PubMed Central
Google Scholar
Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a newfunctional genus with potential probiotic properties? Gut Microbes. 2021. https://doi.org/10.1080/19490976.2021.1875796.
Article
PubMed
PubMed Central
Google Scholar
Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr. 2010. https://doi.org/10.1017/S0007114510001303.
Article
PubMed
Google Scholar
Zhao Y, Wu J, Li JV, Zhou NY, Tang H, Wang Y. Gut microbiota composition modifies fecal metabolic profiles in mice. J Proteome Res. 2013. https://doi.org/10.1021/pr400263n.
Article
PubMed
PubMed Central
Google Scholar
Sanchez B, Cobo A, Hidalgo M, Martinez-Rodriguez AM, Prieto I, Galvez A, Martínez-Cañamero M. Influence of the type of diet on the incidence of pathogenicfactors and antibiotic resistance in enterococci isolated from faeces in mice. Int JMol Sci. 2019. https://doi.org/10.3390/ijms20174290.
Article
Google Scholar
Seishima J, Iida N, Kitamura K, et al. Gut-derived enterococcus faecium fromulcerative colitis patients promotes colitis in a genetically susceptible mouse host. Genome Biol. 2019. https://doi.org/10.1186/s13059-019-1879-9.
Article
PubMed
PubMed Central
Google Scholar
Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus eubacterium and their various contributions to gut health. Gut Microbes. 2020. https://doi.org/10.1080/19490976.2020.1802866.
Article
PubMed
PubMed Central
Google Scholar
Pope JL, Yang Y, Newsome RC, Sun W, Sun X, Ukhanova M, Neu J, Issa JP, Mai V, Jobin C. Microbial colonization coordinates the pathogenesis of a klebsiella pneumoniae infant isolate. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-39887-8.
Article
PubMed
PubMed Central
Google Scholar
Precup G, Vodnar DC. Gut Prevotella as a possible biomarker of diet and its eubioticversus dysbiotic roles: a comprehensive literature review. Br J Nutr. 2019. https://doi.org/10.1017/S0007114519000680.
Article
PubMed
Google Scholar
Klein G. Taxonomy, ecology and antibiotic resistance of enterococci from food and the gastro-intestinal tract. Int J Food Microbiol. 2003. https://doi.org/10.1016/s0168-1605(03)00175-2.
Article
PubMed
Google Scholar
Marietta EV, Murray JA, Luckey DH, Jeraldo PR, Lamba A, Patel R, Luthra HS, Mangalam A, Taneja V. Suppression of inflammatory arthritis by human gut-derived prevotella histicola in humanized mice. Arthritis Rheumatol. 2016. https://doi.org/10.1002/art.39785.
Article
PubMed
PubMed Central
Google Scholar
Kim MH, Lee EJ, Cheon JM, Nam KJ, Oh TH, Kim KS. Antioxidant andhepatoprotective effects of fermented red ginseng against high fat diet-inducedhyperlipidemia in rats. Lab Animal Res. 2016. https://doi.org/10.5625/lar.2016.32.4.217.
Article
Google Scholar
Rotimi SO, Ojo DA, Talabi OA, Ugbaja RN, Balogun EA, Ademuyiwa O. Amoxillin and pefloxacin induced cholesterogenesis and phospholipidosis in rattissues. Lipids Health Dis. 2015. https://doi.org/10.1186/s12944-015-0011-8.
Article
PubMed
PubMed Central
Google Scholar
Guo J, Jou W, Gavrilova O, Hall KD. Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. PLoS ONE. 2009. https://doi.org/10.1371/journal.pone.0005370.
Article
PubMed
PubMed Central
Google Scholar
Louis XL, Thandapilly SJ, MohanKumar SK, Yu L, Taylor CG, Zahradka P, Netticadan T. Treatment with low-dose resveratrol reverses cardiacimpairment in obese prone but not in obese resistant rats. J Nutr Biochem. 2012. https://doi.org/10.1016/j.jnutbio.2011.06.010.
Article
PubMed
Google Scholar
Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, Knight R, Panda S. Antibiotic-induced microbiome depletion alters metabolic homeostasis byaffecting gut signaling and colonic metabolism. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-05336-9.
Article
PubMed
PubMed Central
Google Scholar
Rodrigues RR, Greer RL, Dong X, DSouza KN, Gurung M, Wu JY, Morgun A, Shulzhenko N. antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.02306.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Limaye PB, Renaud HJ, Klaassen CD. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol Appl Pharmacol. 2014. https://doi.org/10.1016/j.taap.2014.03.009.
Article
PubMed
PubMed Central
Google Scholar
Yang L, Bajinka O, Jarju PO, Tan Y, Taal AM, Ozdemir G. The varying effects of antibiotics on gut microbiota. AMB Express. 2021. https://doi.org/10.1186/s13568-021-01274-w.
Article
PubMed
PubMed Central
Google Scholar
Qi Y, Aranda JM, Rodriguez V, Raizada MK, Pepine CJ. Impact of antibiotics on arterial blood pressure in a patient with resistant hypertension—a case report. Int J Cardiol. 2015. https://doi.org/10.1016/j.ijcard.2015.07.078.
Article
PubMed
PubMed Central
Google Scholar
Rojas JM, Bolze F, Thorup I, Nowak J, Dalsgaard CM, Skydsgaard M, Berthelsen LO, Keane KA, Søeborg H, Sjögren I, Jensen JT, Fels JJ, Offenberg HK, Andersen LW, Dalgaard M. The effect of diet-induced obesity on toxicological parameters in the polygenic sprague-dawley rat model. Toxicol Pathol. 2018. https://doi.org/10.1177/0192623318803557.
Article
PubMed
Google Scholar
Mkandla Z, Mutize T, Dludla PV, Nkambule BB. Impaired glucose tolerance is associated with enhanced platelet-monocyte aggregation in short-term high-fat diet-fed mice. Nutrients. 2019. https://doi.org/10.3390/nu11112695.
Article
PubMed
PubMed Central
Google Scholar
PodriniCambridge CEL, Lelliott CJ, Carragher DM, Estabel J, Gerdin AK, Karp NA, Scudamore CL, Ramirez-Solis R, White JK, Sanger Mouse Genetics Project. High-fat feeding rapidly induces obesity and lipid derangements in C57BL/6N mice. Mamm Genome. 2013. https://doi.org/10.1007/s00335-013-9456-0.
Article
Google Scholar
Wang M, Lv J, Huang X, Wisniewski T, Zhang W. High-fat diet-induced atherosclerosis promotes neurodegeneration in the triple transgenic (3 × Tg) mouse model of Alzheimer disease associated with chronic platelet activation. Alzheimers Res Ther. 2021. https://doi.org/10.1186/s13195-021-00890-9.
Article
PubMed
PubMed Central
Google Scholar
Nanizawa E, Tamaki Y, Sono R, Miyashita R, Hayashi Y, Kanbe A, Ito H, Ishikawa T. Short-term high-fat diet intake leads to exacerbation of concanavalin a-induced liver injury through the induction of procoagulation state. Biochem Biophys Rep. 2020. https://doi.org/10.1016/j.bbrep.2020.100736.
Article
PubMed
PubMed Central
Google Scholar
Crinigan C, Calhoun M, Sweaze KL. Short-term high fat intake does not significantly alter markers of renal function or inflammation in young male sprague dawley rats. J Nutr Metab. 2015. https://doi.org/10.1155/2015/157520.
Article
PubMed
PubMed Central
Google Scholar
Wang CY, Liao JK. A mouse model of diet-induced obesity and insulin resistance. Methods Mol Biol. 2012. https://doi.org/10.1007/978-1-61779-430-8_27.
Article
PubMed
PubMed Central
Google Scholar
Speakman J, Hambly C, Mitchell S, Krol E. Animal models of obesity. Obes Rev. 2007. https://doi.org/10.1111/j.1467-789X.2007.00319.x.
Article
PubMed
Google Scholar
Houtkooper RH, Argmann C, Houten SM, Canto C, Jeninga EH, Andreux PA, et al. The metabolic footprint of aging in mice. Sci Rep. 2011. https://doi.org/10.1038/srep00134.
Article
PubMed
PubMed Central
Google Scholar
Han J, Nepal P, Odelade A, et al. Front. Nutr. 2021. https://doi.org/10.3389/fnut.2020.591161.
Article
Google Scholar
Marx JO, Vudathala D, Murphy L, Rankin S, Hankenson FC. Antibiotic administration in the drinking water of mice. J Am Assoc Lab Anim Sci. 2014;53(3):301–6.
CAS
PubMed
PubMed Central
Google Scholar
Caporaso J, Lauber C, Walters W, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012. https://doi.org/10.1038/ismej.2012.8.
Article
PubMed
PubMed Central
Google Scholar
Fadrosh DW, Ma B, Gajer P, et al. An improved dual-indexing approach formultiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014. https://doi.org/10.1186/2049-2618-2-6.
Article
PubMed
PubMed Central
Google Scholar
Magoc T, Salzberg SL. FLASH fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011. https://doi.org/10.1093/bioinformatics/btr507.
Article
PubMed
PubMed Central
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013. https://doi.org/10.1038/nmeth.2604.
Article
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costellon EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley STN, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010. https://doi.org/10.1038/nmeth.f.303.
Article
PubMed
PubMed Central
Google Scholar
Gautam K, Negi S, Saini V. 2021 Targeting endogenous gaseous signaling molecules as novel host-directed therapies against tuberculosis infection. Free Radical Res. 2021;10(1080/10715762):1892091.
Google Scholar
Kushwaha N, Negi S, Kumar A, Zangrando E, Kataria R, Saini V. Synthesis, characterization and utility of a series of novel copper (II) complexes as excellent surface disinfectants against nosocomial infections. Dalton Trans. 2021. https://doi.org/10.1039/D1DT00199J50(39):13699-13711.
Article
PubMed
Google Scholar
Saini V, Chinta KC, Reddy VP, et al. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Nat Commun. 2020. https://doi.org/10.1038/s41467-019-14132-y.
Article
PubMed
PubMed Central
Google Scholar
Kumar P, Saini K, Saini V, et al. Oxalate alters cellular bioenergetics, redox homeostasis, antibacterial response, and immune response in macrophages. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.694865.
Article
PubMed
PubMed Central
Google Scholar